Glaucoma Research and Clinical Advances: 2018 to 2020

Kugler Publications
Free sample

Foreword

Volume 2 of our serial publication continues our desire to address glaucoma with a combination of science and speculation. As science expands, the emphasis is on data, interpretation, and dogma. We disagree; open minds open new approaches. Using methodologies that are primarily molecular and genetic, we seek to refine the causes of glaucoma as well as how it is best treated, especially incorporating thoughts and hypotheses about new methods of treatment. Glaucoma is a complex disease, and genetics proves that a variety of proteins are culpable at one level. At another level, however, there are likely final common pathways and numerous feedback loops which have defied explanations to date.

The search for answers goes on in basic science researcher’s laboratories and clinical ophthalmologist’s offices and operating rooms. We are all well-served by understanding that glaucoma is a neurodegenerative disease. Current attempts to solve the disease have focused on two strategic arenas:

the trabecular meshwork function and its impact on intraocular pressure as a major risk factor for the disease; and the optic nerve dysfunction leading to visual loss. Genetic mutations have yielded puzzling clues to the cause, but without resolution. For example, mutations in myocilin and optineurin genes are closely connected to the phenotype, but how do they cause the disease? In the next two years, priority areas of research are signaling pathway discoveries, biomarker panels, epigenetic factors, and continued genomic studies to yield answers to the common final pathways of the disease.

The final pathways are complex and redundant, such that the overlap of bio-informatics will be challenging. Current promising leads suggest the innate immune system holds important clues to both trabecular meshwork and optic nerve pathophysiology. When the primary open-angle glaucoma disease pathways are unraveled, drug discoveries and new treatment modalities will be available for better regulation of intraocular pressure and neuroprotection for the optic nerve. This volume discusses the glaucoma pipeline from several perspectives as well as future candidate classes. As always, the authors herein are urged to speculate on how the cure of glaucomatous optic nerve damage will yield to new treatments.

John R. Samples
Clinical Professor, Elson S. Floyd College of Medicine, Washington State University School of Medicine www.glaucomaconcepts.com

Paul A. Knepper
Associate Professor of Ophthalmology, Feinberg School of Medicine, Northwestern University Medical School Research Scientist, University of Illinois at Chicago

 

Read more
Collapse
Loading...

Additional Information

Publisher
Kugler Publications
Read more
Collapse
Published on
Apr 24, 2018
Read more
Collapse
Pages
358
Read more
Collapse
ISBN
9789062998883
Read more
Collapse
Read more
Collapse
Best For
Read more
Collapse
Language
English
Read more
Collapse
Genres
Medical / Ophthalmology
Read more
Collapse
Content Protection
This content is DRM protected.
Read more
Collapse

Reading information

Smartphones and Tablets

Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.

Laptops and Computers

You can read books purchased on Google Play using your computer's web browser.

eReaders and other devices

To read on e-ink devices like the Sony eReader or Barnes & Noble Nook, you'll need to download a file and transfer it to your device. Please follow the detailed Help center instructions to transfer the files to supported eReaders.
©2018 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google|Location: United StatesLanguage: English (United States)
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.