Ubiquitin and the Chemistry of Life

Sold by John Wiley & Sons
Free sample

The first volume in a new series dedicated to protein degradation, this book lays the foundations of targeted protein breakdown via the ubiquitin pathway.
The outstanding importance of the ubiquitin pathway has been recognized with the 2004 Nobel Prize in Chemistry for Aaaron Chiechanover, Avram Hershko, and Irwin Rose. Aaron Ciechanover is one of the editors of this series,
and Avram Hershko has contributed to the opening chapter of the present volume.
Drawing on the the expertise of two Nobel prize winners, this handy reference compiles information on the initial steps of the ubiquitin pathway. Starting out with a broad view of protein degradation and its functions in cellular regulation, it then goes on to examine the molecular mechanisms of ubiquitin conjugation and recycling in detail. All currently known classes of ubiquitin protein ligases are treated here, including latest structural data on these enzymes.
Further volumes in the series cover the function of the proteasome, and the roles of the ubiquitin pathway in regulating key cellular processes, as well as its pathophysiological disease states.
Required reading for molecular biologists, cell biologists and physiologists with an interest in protein degradation.
Read more

About the author

John Mayer obtained his MS and PhD degrees from the University of Birmingham (UK). He is currently serving as Professor of Biochemistry at the School of Biomedical Sciences at Nottingham University.
For the past 30 years, he has investigated intracellular proteolysis and particularly the ubiquitin/proteasome system. Presently, he is particularly interested in intracellular proteolysis in relation to neurodegenerative illnesses.

Aaron Ciechanover obtained his MD from the Hebrew University in Jerusalem (Israel), and his PhD from the Technion-Israel Institute of Technology in Haifa, where he is presently serving as Professor of Biochemistry. Professor Ciechanover is known for his discovery of the first ubiquitin system mutant cell, demonstrating the role of the ubiquitin-proteasome proteolytic system in protein degradation in vivo. In 2004, he has received the Nobel Prize in Chemistry for his ground-breaking work on the ubiquitin-proteasome system.

Martin Rechsteiner is Professor of Biochemistry at the University of Utah in Salt Lake City (USA). He is interested in the proteasome component of the ubiquitin-proteasome pathway. He has identified several key regulators of proteasome function and is currently working on their structural and functional elucidation.
Read more
Loading...

Additional Information

Publisher
John Wiley & Sons
Read more
Published on
Mar 6, 2006
Read more
Pages
393
Read more
ISBN
9783527605569
Read more
Read more
Best For
Read more
Language
English
Read more
Genres
Science / Chemistry / Organic
Science / Life Sciences / Cell Biology
Read more
Content Protection
This content is DRM protected.
Read more

Reading information

Smartphones and Tablets

Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.

Laptops and Computers

You can read books purchased on Google Play using your computer's web browser.

eReaders and other devices

To read on e-ink devices like the Sony eReader or Barnes & Noble Nook, you'll need to download a file and transfer it to your device. Please follow the detailed Help center instructions to transfer the files to supported eReaders.
Essential Cell Biology provides a readily accessible introduction to the central concepts of cell biology, and its lively, clear writing and exceptional illustrations make it the ideal textbook for a first course in both cell and molecular biology. The text and figures are easy-to-follow, accurate, clear, and engaging for the introductory student. Molecular detail has been kept to a minimum in order to provide the reader with a cohesive conceptual framework for the basic science that underlies our current understanding of all of biology, including the biomedical sciences.

The Fourth Edition has been thoroughly revised, and covers the latest developments in this fast-moving field, yet retains the academic level and length of the previous edition. The book is accompanied by a rich package of online student and instructor resources, including over 130 narrated movies, an expanded and updated Question Bank.

Essential Cell Biology, Fourth Edition is additionally supported by the Garland Science Learning System. This homework platform is designed to evaluate and improve student performance and allows instructors to select assignments on specific topics and review the performance of the entire class, as well as individual students, via the instructor dashboard. Students receive immediate feedback on their mastery of the topics, and will be better prepared for lectures and classroom discussions. The user-friendly system provides a convenient way to engage students while assessing progress. Performance data can be used to tailor classroom discussion, activities, and lectures to address students’ needs precisely and efficiently. For more information and sample material, visit http://garlandscience.rocketmix.com/.

With information for patients and practitioners on optimizing mitochondrial function for greater health and longevity

Why do we age? Why does cancer develop? What's the connection between heart failure and Alzheimer's disease, or infertility and hearing loss? Can we extend lifespan, and if so, how? What is the Exercise Paradox? Why do antioxidant supplements sometimes do more harm than good? Many will be amazed to learn that all these questions, and many more, can be answered by a single point of discussion: mitochondria and bioenergetics.

In Mitochondria and the Future of Medicine, Naturopathic Doctor Lee Know tells the epic story of mitochondria, the widely misunderstood and often-overlooked powerhouses of our cells. The legendary saga began over two billion years ago, when one bacterium entered another without being digested, which would evolve to create the first mitochondrion. Since then, for life to exist beyond single-celled bacteria, it's the mitochondria that have been responsible for this life-giving energy. By understanding how our mitochondria work, in fact, it is possible to add years to our lives, and life to our years.

Current research, however, has revealed a dark side: many seemingly disconnected degenerative diseases have tangled roots in dysfunctional mitochondria. However, modern research has also endowed us with the knowledge on how to optimize its function, which is of critical importance to our health and longevity. Lee Know offers cutting-edge information on supplementation and lifestyle changes for mitochondrial optimization, such as CoQ10, D-Ribose, cannabinoids, and ketogenic dietary therapy, and how to implement their use successfully. Mitochondria and the Future of Medicine is an invaluable resource for practitioners interested in mitochondrial medicine and the true roots of chronic illness and disease, as well as anyone interested in optimizing their health.

©2018 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google|Location: United StatesLanguage: English (United States)
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.