The Black Hole at the Center of Our Galaxy

Princeton University Press
2
Free sample

Could Einstein have possibly anticipated directly testing the most captivating prediction of general relativity, that there exist isolated pockets of spacetime shielded completely from our own? Now, almost a century after that theory emerged, one of the world's leading astrophysicists presents a wealth of recent evidence that just such an entity, with a mass of about three million suns, is indeed lurking at the center of our galaxy, the Milky Way--in the form of a supermassive ''black hole''!

With this superbly illustrated, elegantly written, nontechnical account of the most enigmatic astronomical object yet observed, Fulvio Melia captures all the excitement of the growing realization that we are on the verge of actually seeing this exotic object within the next few years.


Melia traces our intellectual pilgrimage to the ''brooding behemoth'' at the heart of the Milky Way. He describes the dizzying technological advances that have recently brought us to the point of seeing through all the cosmic dust to a dark spot in a clouded cluster of stars in the constellation Sagittarius. Carefully assembling the compelling circumstantial evidence for its black hole status, he shows that it is primed to reveal itself as a glorious panorama of activity within this decade--through revolutionary images of its ''event horizon'' against the bright backdrop of nearby, radiating gas.


Uniquely, this book brings together a specific and fascinating astronomical subject--black holes--with a top researcher to provide both amateur and armchair astronomers, but also professional scientists seeking a concise overview of the topic, a real sense of the palpable thrill in the scientific community when an important discovery is imminent.

Read more
Collapse

About the author

Fulvio Melia is Professor of Physics and Astronomy at the University of Arizona and Scientific Editor of the Astrophysical Journal. A former Presidential Young Investigator and Sloan Research Fellow, he is the author of more than 170 articles on theoretical astrophysics and of a textbook, Electrodynamics.
Read more
Collapse
5.0
2 total
Loading...

Additional Information

Publisher
Princeton University Press
Read more
Collapse
Published on
Jun 5, 2018
Read more
Collapse
Pages
202
Read more
Collapse
ISBN
9780691186368
Read more
Collapse
Read more
Collapse
Best For
Read more
Collapse
Language
English
Read more
Collapse
Genres
Science / Astronomy
Read more
Collapse
Content Protection
This content is DRM protected.
Read more
Collapse
Eligible for Family Library

Reading information

Smartphones and Tablets

Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.

Laptops and Computers

You can read books purchased on Google Play using your computer's web browser.

eReaders and other devices

To read on e-ink devices like the Sony eReader or Barnes & Noble Nook, you'll need to download a file and transfer it to your device. Please follow the detailed Help center instructions to transfer the files to supported eReaders.
Astronomy For Beginners is a friendly and accessible guide to our universe, our galaxy, our solar system and the planet we call home. Each year as we cruise through space on this tiny blue-green wonder, a number of amazing and remarkable events occur. For example, like clockwork, we’ll run head-on into asteroid and cometary debris that spreads shooting stars across our skies. On occasion, we’ll get to watch the disk of the Moon passing the Sun, casting its shadow on the face of the Earth, and sometimes we’ll get to watch our own shadow as it glides across the face of the Moon. The Sun’s path will constantly change across the daytime sky, as will the stars and constellations at night. During this time, we’ll also get to watch the other majestic planets in our solar system wander the skies, as they too circle the Sun in this elaborate celestial dance.

Astronomy For Beginners will explain this elaborate celestial dance – the patterns of the heavens, the equinoxes and the solstices, the major meteor showers, and the solar and lunar eclipses. In addition, Astronomy For Beginners will also take you on a guided tour of the solar system and beyond. We’ll discover how the way we measure time itself is intimately related to celestial phenomena, and we’ll furthermore explore our historical and continuing mission to understand our place in this marvelous universe in which we find ourselves.

Oh yeah, one more thing: Astronomy For Beginners will not only help you become an expert in space and time – but it also promises to be a pretty fun ride!
How to predict and calculate the positions of stars, planets, the sun, the moon, and satellites using a personal computer and high school mathematics.

Our knowledge of the universe is expanding rapidly, as space probes launched decades ago begin to send information back to earth. There has never been a better time to learn about how planets, stars, and satellites move through the heavens. This book is for amateur astronomers who want to move beyond pictures of constellations in star guides and solve the mysteries of a starry night. It is a book for readers who have wondered, for example, where Saturn will appear in the night sky, when the sun will rise and set, or how long the space station will be over their location. In Celestial Calculations, J. L. Lawrence shows readers how to find the answers to these and other astronomy questions with only a personal computer and high school math. Using an easy-to-follow step-by-step approach, Lawrence explains what calculations are required, why they are needed, and how they all fit together.

Lawrence begins with basic principles: unit of measure conversions, time conversions, and coordinate systems. He combines these concepts into a computer program that can calculate the location of a star, and uses the same methods for predicting the locations of the sun, moon, and planets. He then shows how to use these methods for locating the many satellites we have sent into orbit. Finally, he describes a variety of resources and tools available to the amateur astronomer, including star charts and astronomical tables. Diagrams illustrate the major concepts, and computer programs that implement the algorithms are included. Photographs of actual celestial objects accompany the text, and interesting astronomical facts are interspersed throughout.

Source code (in Python 3, JAVA, and Visual Basic) and executables for all the programs and examples presented in the book are available for download at https://CelestialCalculations.github.io.

Albert Einstein’s theory of general relativity describes the effect of gravitation on the shape of space and the flow of time. But for more than four decades after its publication, the theory remained largely a curiosity for scientists; however accurate it seemed, Einstein’s mathematical code—represented by six interlocking equations—was one of the most difficult to crack in all of science. That is, until a twenty-nine-year-old Cambridge graduate solved the great riddle in 1963. Roy Kerr’s solution emerged coincidentally with the discovery of black holes that same year and provided fertile testing ground—at long last—for general relativity. Today, scientists routinely cite the Kerr solution, but even among specialists, few know the story of how Kerr cracked Einstein’s code.

Fulvio Melia here offers an eyewitness account of the events leading up to Kerr’s great discovery. Cracking the Einstein Code vividly describes how luminaries such as Karl Schwarzschild, David Hilbert, and Emmy Noether set the stage for the Kerr solution; how Kerr came to make his breakthrough; and how scientists such as Roger Penrose, Kip Thorne, and Stephen Hawking used the accomplishment to refine and expand modern astronomy and physics. Today more than 300 million supermassive black holes are suspected of anchoring their host galaxies across the cosmos, and the Kerr solution is what astronomers and astrophysicists use to describe much of their behavior.

By unmasking the history behind the search for a real world solution to Einstein’s field equations, Melia offers a first-hand account of an important but untold story. Sometimes dramatic, often exhilarating, but always attuned to the human element, Cracking the Einstein Code is ultimately a showcase of how important science gets done.

Winner of the 2017 Nobel Prize in Physics

Ever since Albert Einstein's general theory of relativity burst upon the world in 1915 some of the most brilliant minds of our century have sought to decipher the mysteries bequeathed by that theory, a legacy so unthinkable in some respects that even Einstein himself rejected them.

Which of these bizarre phenomena, if any, can really exist in our universe? Black holes, down which anything can fall but from which nothing can return; wormholes, short spacewarps connecting regions of the cosmos; singularities, where space and time are so violently warped that time ceases to exist and space becomes a kind of foam; gravitational waves, which carry symphonic accounts of collisions of black holes billions of years ago; and time machines, for traveling backward and forward in time.

Kip Thorne, along with fellow theorists Stephen Hawking and Roger Penrose, a cadre of Russians, and earlier scientists such as Oppenheimer, Wheeler and Chandrasekhar, has been in the thick of the quest to secure answers. In this masterfully written and brilliantly informed work of scientific history and explanation, Dr. Thorne, a Nobel Prize-winning physicist and the Feynman Professor of Theoretical Physics Emeritus at Caltech, leads his readers through an elegant, always human, tapestry of interlocking themes, coming finally to a uniquely informed answer to the great question: what principles control our universe and why do physicists think they know the things they think they know? Stephen Hawking's A Brief History of Time has been one of the greatest best-sellers in publishing history. Anyone who struggled with that book will find here a more slowly paced but equally mind-stretching experience, with the added fascination of a rich historical and human component.

Winner of the Phi Beta Kappa Award in Science.

©2019 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google|Location: United StatesLanguage: English (United States)
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.