Integration of One-forms on P-adic Analytic Spaces. (AM-162)

Princeton University Press
Free sample

Among the many differences between classical and p-adic objects, those related to differential equations occupy a special place. For example, a closed p-adic analytic one-form defined on a simply-connected domain does not necessarily have a primitive in the class of analytic functions. In the early 1980s, Robert Coleman discovered a way to construct primitives of analytic one-forms on certain smooth p-adic analytic curves in a bigger class of functions. Since then, there have been several attempts to generalize his ideas to smooth p-adic analytic spaces of higher dimension, but the spaces considered were invariably associated with algebraic varieties.

This book aims to show that every smooth p-adic analytic space is provided with a sheaf of functions that includes all analytic ones and satisfies a uniqueness property. It also contains local primitives of all closed one-forms with coefficients in the sheaf that, in the case considered by Coleman, coincide with those he constructed. In consequence, one constructs a parallel transport of local solutions of a unipotent differential equation and an integral of a closed one-form along a path so that both depend nontrivially on the homotopy class of the path.


Both the author's previous results on geometric properties of smooth p-adic analytic spaces and the theory of isocrystals are further developed in this book, which is aimed at graduate students and mathematicians working in the areas of non-Archimedean analytic geometry, number theory, and algebraic geometry.

Read more

About the author

Vladimir G. Berkovich is Matthew B. Rosenhaus Professor of Mathematics at the Weizmann Institute of Science in Rehovot, Israel. He is the author of Spectral Theory and Analytic Geometry over Non-Archimedean Fields.
Read more
Loading...

Additional Information

Publisher
Princeton University Press
Read more
Published on
Nov 13, 2006
Read more
Pages
168
Read more
ISBN
9781400837151
Read more
Read more
Best For
Read more
Language
English
Read more
Genres
Mathematics / Differential Equations / General
Mathematics / Geometry / Analytic
Mathematics / Geometry / Non-Euclidean
Read more
Content Protection
This content is DRM protected.
Read more

Reading information

Smartphones and Tablets

Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.

Laptops and Computers

You can read books purchased on Google Play using your computer's web browser.

eReaders and other devices

To read on e-ink devices like the Sony eReader or Barnes & Noble Nook, you'll need to download a file and transfer it to your device. Please follow the detailed Help center instructions to transfer the files to supported eReaders.
This revised and updated text, now in its second edition, continues to present the theoretical concepts of methods of solutions of ordinary and partial differential equations. It equips students with the various tools and techniques to model different physical problems using such equations. The book discusses the basic concepts of ordinary and partial differential equations. It contains different methods of solving ordinary differential equations of first order and higher degree. It gives the solution methodology for linear differential equations with constant and variable coefficients and linear differential equations of second order. The text elaborates simultaneous linear differential equations, total differential equations, and partial differential equations along with the series solution of second order linear differential equations. It also covers Bessel’s and Legendre’s equations and functions, and the Laplace transform. Finally, the book revisits partial differential equations to solve the Laplace equation, wave equation and diffusion equation, and discusses the methods to solve partial differential equations using the Fourier transform. A large number of solved examples as well as exercises at the end of chapters help the students comprehend and strengthen the underlying concepts. The book is intended for undergraduate and postgraduate students of Mathematics (B.A./B.Sc., M.A./M.Sc.), and undergraduate students of all branches of engineering (B.E./B.Tech.), as part of their course in Engineering Mathematics. New to the SECOND Edition • Includes new sections and subsections such as applications of differential equations, special substitution (Lagrange and Riccati), solutions of non-linear equations which are exact, method of variation of parameters for linear equations of order higher than two, and method of undetermined coefficients • Incorporates several worked-out examples and exercises with their answers • Contains a new Chapter 19 on ‘Z-Transforms and its Applications’.
With Wiley’s Enhanced E-Text, you get all the benefits of a downloadable, reflowable eBook with added resources to make your study time more effective, including:

• Embedded & searchable equations, figures & tables
• Math XML
• Index with linked pages numbers for easy reference
• Redrawn full color figures to allow for easier identification

Elementary Differential Equations and Boundary Value Problems 11e, like its predecessors, is written from the viewpoint of the applied mathematician, whose interest in differential equations may sometimes be quite theoretical, sometimes intensely practical, and often somewhere in between. The authors have sought to combine a sound and accurate (but not abstract) exposition of the elementary theory of differential equations with considerable material on methods of solution, analysis, and approximation that have proved useful in a wide variety of applications. While the general structure of the book remains unchanged, some notable changes have been made to improve the clarity and readability of basic material about differential equations and their applications. In addition to expanded explanations, the 11th edition includes new problems, updated figures and examples to help motivate students.

The program is primarily intended for undergraduate students of mathematics, science, or engineering, who typically take a course on differential equations during their first or second year of study. The main prerequisite for engaging with the program is a working knowledge of calculus, gained from a normal twoï¿1?2 or threeï¿1?2 semester course sequence or its equivalent. Some familiarity with matrices will also be helpful in the chapters on systems of differential equations.
In this splendidly lucid and profusely illustrated book, a Nobel laureate relates the fascinating story of Einstein, the general and special theories of relativity, and the scientists before and since who influenced relativity's genesis and development. Eschewing technical terms in favor of ordinary language, the book offers a perfect introduction to relativity for readers without specialized knowledge of mathematics and science.
The author follows Einstein's own dictum to make explanations "as simple as possible, but not more so." His periodic use of equations as points of clarification involve nothing more than simple algebra; these can be disregarded by math-averse readers. Dr. Schwinger begins with a discussion of the conflict between two principles of electromagnetic theory that are irreconcilable in Newtonian physics, and how Einstein's attempts to resolve this conflict led to the theory of relativity. Readers learn about the meaning of time and the paradoxes of space travel at speeds close to that of light, following the development of Einstein's relativistic thought and his epochal perception that E=mc2. Further chapters examine gravity and its effect on light; non-Euclidean geometry and the curving of space-time; and the impact of radio astronomy and space-age discoveries upon Einstein's model of the universe.
Amusing quotes, suppositions, and illustrative fictions — along with numerous sidebars and boxes explaining physical principles, anomalies, events, and inventions — enhance this accessible introduction, and provide stimulating food for thought. Preface. 189 black-and-white illustrations. Sources of the Illustrations. Index.
©2018 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google|Location: United StatesLanguage: English (United States)
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.