Algorithms in Real Algebraic Geometry

Algorithms and Computation in Mathematics

Book 10
Springer Science & Business Media
Free sample

The algorithmic problems of real algebraic geometry such as real root counting, deciding the existence of solutions of systems of polynomial equations and inequalities, finding global maxima or deciding whether two points belong in the same connected component of a semi-algebraic set appear frequently in many areas of science and engineering. In this textbook the main ideas and techniques presented form a coherent and rich body of knowledge.

Mathematicians will find relevant information about the algorithmic aspects. Researchers in computer science and engineering will find the required mathematical background.

Being self-contained the book is accessible to graduate students and even, for invaluable parts of it, to undergraduate students.

This second edition contains several recent results, on discriminants of symmetric matrices, real root isolation, global optimization, quantitative results on semi-algebraic sets and the first single exponential algorithm computing their first Betti number.

Read more
Collapse
Loading...

Additional Information

Publisher
Springer Science & Business Media
Read more
Collapse
Published on
Apr 21, 2007
Read more
Collapse
Pages
662
Read more
Collapse
ISBN
9783540330998
Read more
Collapse
Read more
Collapse
Best For
Read more
Collapse
Language
English
Read more
Collapse
Genres
Computers / Data Processing
Computers / Programming / Algorithms
Mathematics / Algebra / General
Mathematics / Discrete Mathematics
Mathematics / Geometry / Algebraic
Mathematics / Numerical Analysis
Read more
Collapse
Content Protection
This content is DRM protected.
Read more
Collapse

Reading information

Smartphones and Tablets

Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.

Laptops and Computers

You can read books purchased on Google Play using your computer's web browser.

eReaders and other devices

To read on e-ink devices like the Sony eReader or Barnes & Noble Nook, you'll need to download a file and transfer it to your device. Please follow the detailed Help center instructions to transfer the files to supported eReaders.
This comprehensive book covers both long-standing results in the theory of polynomials and recent developments which have until now only been available in the research literature. After initial chapters on the location and separation of roots and on irreducibility criteria, the book covers more specialized polynomials, including those which are symmetric, integer-value or cyclotomic, and those of Chebyshev and Bernoulli. There follow chapters on Galois theory and ideals in polynomial rings. Finally there is a detailed discussion of Hilbert’s 17th problem on the representation of non-negative polynomials as sums of squares of rational functions and generalizations.

From the reviews:

"... Despite the appearance of this book in a series titled Algorithms and Computation of Mathematics, computation occupies only a small part of the monograph. It is best described as a useful reference for one's personal collection and a text for a full-year course given to graduate or even senior undergraduate students. [.....] the book under review is worth purchasing for the library and possibly even for one's own collection. The author's interest in the history and development of this area is evident, and we have pleasant glimpses of progress over the last three centuries. He exercises nice judgment in selection of arguments, with respect to both representativeness of approaches and elegance, so that the reader gains a synopsis of and guide to the literature, in which more detail can be found. ..." (E. Barbeau, SIAM Review 47, No. 3, 2005)

"... the volume is packed with results and proofs that are well organised thematically into chapters and sections. What is unusual is to have a text that embraces and intermingles both analytic and algebraic aspects of the theory. Although the subject is about such basic objects, many tough results of considerable generality are incorporated and it is striking that refinements, both in theorems and proofs continued throughout the latter part of the Twentieth Century. [...] There is a plentiful of problems, some of which might be challenging even for polynomial people; solutions to selected problems are also included." (S.D.Cohen, MathSciNet, MR 2082772, 2005)

"Problems concerning polynomials have impulsed resp. accompanied the development of algebra from its very beginning until today and over the centuries a lot of mathematical gems have been brought to light. This book presents a few of them, some being classical, but partly probably unknown even to experts, some being quite recently discovered. [...] Many historical comments and a clear style make the book very readable, so it can be recommended warmly to non-experts already at an undergraduate level and, because of its contents, to experts as well." (G.Kowol, Monatshefte für Mathematik 146, Issue 4, 2005)

The subject of this book is the solution of polynomial equations, that is, s- tems of (generally) non-linear algebraic equations. This study is at the heart of several areas of mathematics and its applications. It has provided the - tivation for advances in di?erent branches of mathematics such as algebra, geometry, topology, and numerical analysis. In recent years, an explosive - velopment of algorithms and software has made it possible to solve many problems which had been intractable up to then and greatly expanded the areas of applications to include robotics, machine vision, signal processing, structural molecular biology, computer-aided design and geometric modelling, as well as certain areas of statistics, optimization and game theory, and b- logical networks. At the same time, symbolic computation has proved to be an invaluable tool for experimentation and conjecture in pure mathematics. As a consequence, the interest in e?ective algebraic geometry and computer algebrahasextendedwellbeyonditsoriginalconstituencyofpureandapplied mathematicians and computer scientists, to encompass many other scientists and engineers. While the core of the subject remains algebraic geometry, it also calls upon many other aspects of mathematics and theoretical computer science, ranging from numerical methods, di?erential equations and number theory to discrete geometry, combinatorics and complexity theory. Thegoalofthisbookistoprovideageneralintroduction tomodernma- ematical aspects in computing with multivariate polynomials and in solving algebraic systems.
This comprehensive book covers both long-standing results in the theory of polynomials and recent developments which have until now only been available in the research literature. After initial chapters on the location and separation of roots and on irreducibility criteria, the book covers more specialized polynomials, including those which are symmetric, integer-value or cyclotomic, and those of Chebyshev and Bernoulli. There follow chapters on Galois theory and ideals in polynomial rings. Finally there is a detailed discussion of Hilbert’s 17th problem on the representation of non-negative polynomials as sums of squares of rational functions and generalizations.

From the reviews:

"... Despite the appearance of this book in a series titled Algorithms and Computation of Mathematics, computation occupies only a small part of the monograph. It is best described as a useful reference for one's personal collection and a text for a full-year course given to graduate or even senior undergraduate students. [.....] the book under review is worth purchasing for the library and possibly even for one's own collection. The author's interest in the history and development of this area is evident, and we have pleasant glimpses of progress over the last three centuries. He exercises nice judgment in selection of arguments, with respect to both representativeness of approaches and elegance, so that the reader gains a synopsis of and guide to the literature, in which more detail can be found. ..." (E. Barbeau, SIAM Review 47, No. 3, 2005)

"... the volume is packed with results and proofs that are well organised thematically into chapters and sections. What is unusual is to have a text that embraces and intermingles both analytic and algebraic aspects of the theory. Although the subject is about such basic objects, many tough results of considerable generality are incorporated and it is striking that refinements, both in theorems and proofs continued throughout the latter part of the Twentieth Century. [...] There is a plentiful of problems, some of which might be challenging even for polynomial people; solutions to selected problems are also included." (S.D.Cohen, MathSciNet, MR 2082772, 2005)

"Problems concerning polynomials have impulsed resp. accompanied the development of algebra from its very beginning until today and over the centuries a lot of mathematical gems have been brought to light. This book presents a few of them, some being classical, but partly probably unknown even to experts, some being quite recently discovered. [...] Many historical comments and a clear style make the book very readable, so it can be recommended warmly to non-experts already at an undergraduate level and, because of its contents, to experts as well." (G.Kowol, Monatshefte für Mathematik 146, Issue 4, 2005)

©2019 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google|Location: United StatesLanguage: English (United States)
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.