The Book of Why: The New Science of Cause and Effect

Sold by Basic Books
1
Free sample

A Turing Award-winning computer scientist and statistician shows how understanding causality has revolutionized science and will revolutionize artificial intelligence
"Correlation is not causation." This mantra, chanted by scientists for more than a century, has led to a virtual prohibition on causal talk. Today, that taboo is dead. The causal revolution, instigated by Judea Pearl and his colleagues, has cut through a century of confusion and established causality--the study of cause and effect--on a firm scientific basis. His work explains how we can know easy things, like whether it was rain or a sprinkler that made a sidewalk wet; and how to answer hard questions, like whether a drug cured an illness. Pearl's work enables us to know not just whether one thing causes another: it lets us explore the world that is and the worlds that could have been. It shows us the essence of human thought and key to artificial intelligence. Anyone who wants to understand either needs The Book of Why.


Read more
Collapse

About the author

Judea Pearl is a Professor of Computer Science at UCLA. The author of three highly influential scholarly books, he is a winner of the Alan Turing Award, often considered the equivalent of the Nobel Prize for computer science. He is a member of the U.S. National Academy of Sciences, and was one of the first ten inductees into the IEEE Intelligent Systems Hall of Fame. He has received numerous awards and honorary doctorates, including the Rumelhart Prize (Cognitive Science Society), the Benjamin Franklin Medal (Franklin Institute) and the Lakatos Award (London School of Economics). He is the founder and president of the Daniel Pearl Foundation. He lives in Los Angeles, CA.
Dana Mackenzie is a Ph.D. mathematician turned science writer, and has written for such magazines as Science, New Scientist, Scientific American, Smithsonian, Nautilus, and Discover. His book, The BigSplat, or How Our Moon Came to Be, was named a Booklist Editors' Choice and selected as an Audiobook of the Year for 2010 by Audible.com. He received the 2012 Communication Award (Joint Policy Board for Mathematics) and the 2015 Chauvenet Prize for mathematical exposition (Mathematical Association of America). He lives in Santa Cruz, CA.
Read more
Collapse
5.0
1 total
Loading...

Additional Information

Publisher
Basic Books
Read more
Collapse
Published on
May 15, 2018
Read more
Collapse
Pages
432
Read more
Collapse
ISBN
9780465097616
Read more
Collapse
Features
Read more
Collapse
Read more
Collapse
Language
English
Read more
Collapse
Genres
Business & Economics / Statistics
Computers / Computer Science
Computers / Intelligence (AI) & Semantics
Mathematics / Probability & Statistics / General
Science / Applied Sciences
Read more
Collapse
Content Protection
This content is DRM protected.
Read more
Collapse
Read Aloud
Available on Android devices
Read more
Collapse
Eligible for Family Library

Reading information

Smartphones and Tablets

Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.

Laptops and Computers

You can read books purchased on Google Play using your computer's web browser.

eReaders and other devices

To read on e-ink devices like the Sony eReader or Barnes & Noble Nook, you'll need to download a file and transfer it to your device. Please follow the detailed Help center instructions to transfer the files to supported eReaders.
This book contains a selection of papers presented at the International Workshop Machine Learning, Meta-Reasoning and Logics held in Hotel de Mar in Sesimbra, Portugal, 15-17 February 1988. All the papers were edited afterwards. The Workshop encompassed several fields of Artificial Intelligence: Machine Learning, Belief Revision, Meta-Reasoning and Logics. The objective of this Workshop was not only to address the common issues in these areas, but also to examine how to elaborate cognitive architectures for systems capable of learning from experience, revising their beliefs and reasoning about what they know. Acknowledgements The editing of this book has been supported by COST-13 Project Machine Learning and Knowledge Acquisition funded by the Commission o/the European Communities which has covered a substantial part of the costs. Other sponsors who have supported this work were Junta Nacional de lnvestiga~ao Cientlfica (JNICT), lnstituto Nacional de lnvestiga~ao Cientlfica (INIC), Funda~ao Calouste Gulbenkian. I wish to express my gratitude to all these institutions. Finally my special thanks to Paula Pereira and AnaN ogueira for their help in preparing this volume. This work included retyping all the texts and preparing the camera-ready copy. Introduction 1 1. Meta-Reasoning and Machine Learning The first chapter is concerned with the role meta-reasoning plays in intelligent systems capable of learning. As we can see from the papers that appear in this chapter, there are basically two different schools of thought.
The book includes all the background material required to understand the principles underlying intelligence, as well as enough detailed information on intelligent robotics and simulated agents so readers can begin experiments and projects on their own.

By the mid-1980s researchers from artificial intelligence, computer science, brain and cognitive science, and psychology realized that the idea of computers as intelligent machines was inappropriate. The brain does not run "programs"; it does something entirely different. But what? Evolutionary theory says that the brain has evolved not to do mathematical proofs but to control our behavior, to ensure our survival. Researchers now agree that intelligence always manifests itself in behavior—thus it is behavior that we must understand. An exciting new field has grown around the study of behavior-based intelligence, also known as embodied cognitive science, "new AI," and "behavior-based AI."

This book provides a systematic introduction to this new way of thinking. After discussing concepts and approaches such as subsumption architecture, Braitenberg vehicles, evolutionary robotics, artificial life, self-organization, and learning, the authors derive a set of principles and a coherent framework for the study of naturally and artificially intelligent systems, or autonomous agents. This framework is based on a synthetic methodology whose goal is understanding by designing and building.

The book includes all the background material required to understand the principles underlying intelligence, as well as enough detailed information on intelligent robotics and simulated agents so readers can begin experiments and projects on their own. The reader is guided through a series of case studies that illustrate the design principles of embodied cognitive science.

An exploration of embodied intelligence and its implications points toward a theory of intelligence in general; with case studies of intelligent systems in ubiquitous computing, business and management, human memory, and robotics.

How could the body influence our thinking when it seems obvious that the brain controls the body? In How the Body Shapes the Way We Think, Rolf Pfeifer and Josh Bongard demonstrate that thought is not independent of the body but is tightly constrained, and at the same time enabled, by it. They argue that the kinds of thoughts we are capable of have their foundation in our embodiment—in our morphology and the material properties of our bodies.

This crucial notion of embodiment underlies fundamental changes in the field of artificial intelligence over the past two decades, and Pfeifer and Bongard use the basic methodology of artificial intelligence—"understanding by building"—to describe their insights. If we understand how to design and build intelligent systems, they reason, we will better understand intelligence in general. In accessible, nontechnical language, and using many examples, they introduce the basic concepts by building on recent developments in robotics, biology, neuroscience, and psychology to outline a possible theory of intelligence. They illustrate applications of such a theory in ubiquitous computing, business and management, and the psychology of human memory. Embodied intelligence, as described by Pfeifer and Bongard, has important implications for our understanding of both natural and artificial intelligence.

Major New York Times bestseller
Winner of the National Academy of Sciences Best Book Award in 2012
Selected by the New York Times Book Review as one of the ten best books of 2011
A Globe and Mail Best Books of the Year 2011 Title
One of The Economist's 2011 Books of the Year
One of The Wall Street Journal's Best Nonfiction Books of the Year 2011
2013 Presidential Medal of Freedom Recipient
Kahneman's work with Amos Tversky is the subject of Michael Lewis's The Undoing Project: A Friendship That Changed Our Minds

In the international bestseller, Thinking, Fast and Slow, Daniel Kahneman, the renowned psychologist and winner of the Nobel Prize in Economics, takes us on a groundbreaking tour of the mind and explains the two systems that drive the way we think. System 1 is fast, intuitive, and emotional; System 2 is slower, more deliberative, and more logical. The impact of overconfidence on corporate strategies, the difficulties of predicting what will make us happy in the future, the profound effect of cognitive biases on everything from playing the stock market to planning our next vacation—each of these can be understood only by knowing how the two systems shape our judgments and decisions.

Engaging the reader in a lively conversation about how we think, Kahneman reveals where we can and cannot trust our intuitions and how we can tap into the benefits of slow thinking. He offers practical and enlightening insights into how choices are made in both our business and our personal lives—and how we can use different techniques to guard against the mental glitches that often get us into trouble. Winner of the National Academy of Sciences Best Book Award and the Los Angeles Times Book Prize and selected by The New York Times Book Review as one of the ten best books of 2011, Thinking, Fast and Slow is destined to be a classic.

Probabilistic Reasoning in Intelligent Systems is a complete and accessible account of the theoretical foundations and computational methods that underlie plausible reasoning under uncertainty. The author provides a coherent explication of probability as a language for reasoning with partial belief and offers a unifying perspective on other AI approaches to uncertainty, such as the Dempster-Shafer formalism, truth maintenance systems, and nonmonotonic logic.

The author distinguishes syntactic and semantic approaches to uncertainty--and offers techniques, based on belief networks, that provide a mechanism for making semantics-based systems operational. Specifically, network-propagation techniques serve as a mechanism for combining the theoretical coherence of probability theory with modern demands of reasoning-systems technology: modular declarative inputs, conceptually meaningful inferences, and parallel distributed computation. Application areas include diagnosis, forecasting, image interpretation, multi-sensor fusion, decision support systems, plan recognition, planning, speech recognition--in short, almost every task requiring that conclusions be drawn from uncertain clues and incomplete information.


Probabilistic Reasoning in Intelligent Systems will be of special interest to scholars and researchers in AI, decision theory, statistics, logic, philosophy, cognitive psychology, and the management sciences. Professionals in the areas of knowledge-based systems, operations research, engineering, and statistics will find theoretical and computational tools of immediate practical use. The book can also be used as an excellent text for graduate-level courses in AI, operations research, or applied probability.

©2019 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google|Location: United StatesLanguage: English (United States)
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.