Applications of High Temperature Superconductors to Electric Power Equipment

Sold by John Wiley & Sons
Free sample

The only one-stop reference to design, analysis, and manufacturing concepts for power devices utilizing HTS.

High temperature superconductors (HTS) have been used for building many devices for electric grids worldwide and for large ship propulsion motors for the U.S. Navy. And yet, there has been no single source discussing theory and design issues relating to power applications of HTS—until now. This book provides design and analysis for various devices and includes examples of devices built over the last decade.

Starting with a complete overview of HTS, the subsequent chapters are dedicated to specific devices: cooling and thermal insulation systems; rotating AC and DC machines; transformers; fault current limiters; power cables; and Maglev transport. As applicable, each chapter provides a history of the device, principles, configuration, design and design challenges, prototypes, and manufacturing issues, with each ending with a summary of the material covered. The design analysis and design examples provide critical insight for readers to successfully design their own devices. Original equipment manufacturer (OEM) designers, industry and utilities users, universities and defense services research groups, and senior/postgraduate engineering students and instructors will rely on this resource.

"HTS technology reduces electric losses and increases the efficiency of power equipment. This book by Swarn Kalsi, a leading expert on the HTS subject, provides a survey of the HTS technology and the design rules, performance analyses, and manufacturing concepts for power application-related devices. It compares conventional and HTS technology approaches for device design and provides significant examples of devices utilizing the HTS technology today. The book is useful for a broad spectrum of professionals worldwide: students, teaching staff, and OEM designers as well as users in industry and electric utilities."
Professor Dr. Rolf Hellinger, Research and Technologies Corporate Technology, Siemens AG

Read more
Collapse

About the author

SWARN SINGH KALSI, PhD, has more than forty years of directly related experience (while working for General Electric, Northrop Grumman, and American Superconductor) in all aspects of superconducting magnet technology and electrical engineering. The holder of more than thirty U.S. patents, Dr. Kalsi's entire background has been in the area of electrical power equipment and power systems. During his long career, he has designed and built superconducting devices in areas such as motors and generators, power transmission cables, transformers, fault current limiters, fusion reactors, Maglev, and synchrotrons. Dr. Kalsi also has an extensive background in design and fabrication of conventional motors, generators, control systems, and switchgears. He has served on several IEEE and Cigre panels for work relating to conventional and superconductor technologies.
Read more
Collapse
Loading...

Additional Information

Publisher
John Wiley & Sons
Read more
Collapse
Published on
Apr 18, 2011
Read more
Collapse
Pages
332
Read more
Collapse
ISBN
9781118110096
Read more
Collapse
Read more
Collapse
Read more
Collapse
Language
English
Read more
Collapse
Genres
Technology & Engineering / Electrical
Technology & Engineering / Superconductors & Superconductivity
Read more
Collapse
Content Protection
This content is DRM protected.
Read more
Collapse
Read Aloud
Available on Android devices
Read more
Collapse

Reading information

Smartphones and Tablets

Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.

Laptops and Computers

You can read books purchased on Google Play using your computer's web browser.

eReaders and other devices

To read on e-ink devices like the Sony eReader or Barnes & Noble Nook, you'll need to download a file and transfer it to your device. Please follow the detailed Help center instructions to transfer the files to supported eReaders.
Computer applications yield more insight into system behavior than is possible by using hand calculations on system elements. Computer-Aided Power Systems Analysis: Second Edition is a state-of-the-art presentation of basic principles and software for power systems in steady-state operation.

Originally published in 1985, this revised edition explores power systems from the point of view of the central control facility. It covers the elements of transmission networks, bus reference frame, network fault and contingency calculations, power flow on transmission networks, generator base power setting, and state estimation from on-line measurements.

The author develops methods used for full-scale networks. In the process of coding and execution, the user learns how the methods apply to actual networks, develops an understanding of the algorithms, and becomes familiar with the process of varying the parameters of the program.

Intended for users with a background that includes AC circuit theory, some basic control theory, and a first course in electronic machinery, this book contains material based upon the author’s experience both in the field and in the classroom, as well as many Institute of Electrical and Electronic Engineers (IEEE) publications. His mathematical approach and complete explanations allow readers to develop a solid foundation in power systems analysis.

This second edition includes a CD-ROM with stand-alone software to perform computations of all principles covered in the chapters. Executable programs include 0,1,2 conversions, double-hung shielded transmission line parameters, zero and positive bus impedance computations for unbalanced faults, power flow, unit commitment, and state estimation.

©2019 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google|Location: United StatesLanguage: English (United States)
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.