Air Distribution in Buildings

CRC Press
Free sample

Air Distribution in Buildings is a concise and practical guide to air distribution system design and managing air conditioning systems in buildings. Making use of 40 years of experience in the design of air conditioning and ventilations systems, and other electromechanical services, this structured reference for built environment engineering offers in-depth coverage of air distribution technology. The text brings together a wide range of information and offers technical guidance on the design, calculation, and efficient operation of air distribution in buildings.

The text highlights the special characteristics of air distribution in individual spaces. It presents the basic and fundamental concepts of air distribution as it relates to grilles and outlets, room space, and buildings. It focuses on air distribution systems in large buildings, starting with simple rooms and then moving on to more complex configurations. It also sums up the latest standards and best practices in air conditioning engineering.

  • Includes knowledge of the new trends in buildings’ air distribution
  • Provides systematic analyses of the air flow regimes, heat transfer, and relative humidity in a collection of special built environments
  • Presents energy analyses of the air conditioning systems for operating theaters and sporting facilities in unusual and severe climatic conditions
  • Offers a description of flow characteristics in archeological monuments with emphasis on combating excessive moisture
  • Introduces examples of very dense occupancy built environments, moisture sensitive environments, and open space air conditioning
  • Details advanced treatment of flow characterization in large public buildings

This text serves as an ideal resource for air conditioning engineers, contractors, and consultants. It also benefits mechanical and architectural engineering students.

Read more
Collapse

About the author

Essam E. Khalil is professor of Mechanical Engineering, Cairo University, Faculty of Engineering , he has over 43 years of experience in design and simulation of combustion chambers for terrestrial and aerospace applications. He has published over 550 papers in journals and conference proceedings on combustion, energy, and indoor air quality control. He has also published 11 books; Professor Khalil is also a Fellow of ASME, Fellow AIAA, Fellow ASHRAE; Distinguished Lecturer ASHRAE. He is editor of Energy & Buildings, Letters in CFD and, International Journal of Reacting Systems. He received many international awards including the ASME George Westinghouse Award recipient 2009, AIAA Energy Systems Award 2010, ASHRAE Distinguished Services Award 2010,AIAA Sustained Services Award 2011, and ASME James Harry Potter Gold Medal Award 2012.

Read more
Collapse
Loading...

Additional Information

Publisher
CRC Press
Read more
Collapse
Published on
Nov 22, 2013
Read more
Collapse
Pages
255
Read more
Collapse
ISBN
9781466594654
Read more
Collapse
Read more
Collapse
Best For
Read more
Collapse
Language
English
Read more
Collapse
Genres
Mathematics / Applied
Science / Energy
Science / Mechanics / Thermodynamics
Technology & Engineering / Construction / Heating, Ventilation & Air Conditioning
Technology & Engineering / Mechanical
Technology & Engineering / Power Resources / General
Read more
Collapse
Content Protection
This content is DRM protected.
Read more
Collapse
Eligible for Family Library

Reading information

Smartphones and Tablets

Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.

Laptops and Computers

You can read books purchased on Google Play using your computer's web browser.

eReaders and other devices

To read on e-ink devices like the Sony eReader or Barnes & Noble Nook, you'll need to download a file and transfer it to your device. Please follow the detailed Help center instructions to transfer the files to supported eReaders.
Buildings account for almost half of total primary energy use and related greenhouse emissions worldwide. Although current energy systems are improving, they still fall disappointingly short of meeting acceptable limits for efficiency.

Well-trained energy auditors are essential to the success of building energy efficiency programs—and Energy Audit of Building Systems: An Engineering Approach, Second Edition updates a bestselling guide to helping them improve their craft. This book outlines a systematic, proven strategy to employ analysis methods to assess the effectiveness of a wide range of technologies and techniques that can save energy and reduce operating costs in residential and commercial buildings.

Useful to auditors, managers, and students of energy systems, material is organized into 17 self-contained chapters, each detailing a specific building subsystem or energy efficiency technology. Rooted in established engineering principles, this volume:

Explores state-of-the-art techniques and technologies to reduce energy consumption in buildings

Lays out innovative energy efficiency technologies and strategies, as well as more established methods, to estimate energy savings from conservation measures

Provides several calculation examples to outline applications of methods

To help readers execute and optimize real building energy audits, the author presents several case studies of existing detailed energy audit reports. These include results from field testing, building energy simulation, and retrofit analysis of existing buildings, with recommendations based on sound economic analysis. Examining various subsystems, such as lighting, heating, and cooling systems, it provides an overview of basic engineering methods used to verify and measure actual energy savings attributed to energy efficiency projects. The author presents simplified calculation methods to evaluate their effectiveness and ultimately improve on them. Ideal either as a professional reference or a text for continuing education courses, this book fortifies readers’ understanding of building energy systems, paving the way for future breakthroughs.

Building on the last edition, (dedicated to exploring alternatives to coal- and oil-based energy conversion methods and published more than ten years ago), Thermodynamics and Heat Power, Eighth Edition updates the status of existing direct energy conversion methods as described in the previous work. Offering a systems approach to the analysis of energy conversion methods, this text focuses on the fundamentals involved in thermodynamics, and further explores concepts in the areas of ideal gas flow, engine analysis, air conditioning, and heat transfer. It examines energy, heat, and work in relation to thermodynamics, and also explores the properties of temperature and pressures. The book emphasizes practical mechanical systems, and incorporates problems at the end of the chapters to advance the application of the material.

What’s New in the Eighth Edition:

An emphasis on a systems approach to problems More discussion of the types of heat and of entropy Added explanations for understanding pound mass and the mole Analysis of steady flow gas processes, replacing the compressible flow section The concept of paddle work to illustrate how frictional effects can be analyzed A clearer discussion of the psychrometric chart and its usage in analyzing air conditioning systems Updates of the status of direct energy conversion systems A description of how the cooling tower is utilized in high-rise buildings Practical automotive engine analysis Expanded Brayton cycle analysis including intercooling, reheat, and regeneration and their effect on gas turbine efficiency A description of fins and how they improve heat transfer rates Added illustrative problems and new homework problems Availability of a publisher’s website for fluid properties and other reference materials Properties of the latest in commercial refrigerants

This text presents an understanding of basic concepts on the subject of thermodynamics and is a definitive resource for undergraduate students in engineering programs, most specifically, students studying engineering technology.

With its uncommon presentation of instructional material regarding mathematical modeling, measurements, and solution of inverse problems, Thermal Measurements and Inverse Techniques is a one-stop reference for those dealing with various aspects of heat transfer.

Progress in mathematical modeling of complex industrial and environmental systems has enabled numerical simulations of most physical phenomena. In addition, recent advances in thermal instrumentation and heat transfer modeling have improved experimental procedures and indirect measurements for heat transfer research of both natural phenomena and manmade applications. These new resources and methods help theoretical, computational, and experimental researchers synergistically interact to better understand the physical phenomena being studied. This book explores how inverse analysis can be used to increase understanding of interactions between technological systems and nature, by bridging the gap between data derived from measurements and information from theoretical predictions.

Assembled in three parts—Modeling and Measurements in Heat Transfer, Inverse Heat Transfer Problems, and Applications—this self-contained resource:

Explores theoretical background and examples

Outlines practical applications, including sample test cases

Presents inverse techniques to estimate spatially and time-varying functions (such as heat sources, fluxes, and thermophysical properties), as well as constant parameters in heat transfer problems

Written by international experts, this book assumes basic heat transfer knowledge, presenting a balanced approach suitable for advanced undergraduates and graduate students, as well as practicing engineers and academic and industrial researchers. With coverage of modeling at the micro- and nanoscales, this book covers classic and novel approaches to help readers understand and solve heat transfer problems of all kinds.

Developed with stress analysts handling multidisciplinary subjects in mind, and written to provide the theories needed for problem solving and stress analysis on structural systems, Essentials of Mechanical Stress Analysis presents a variety of relevant topics—normally offered as individual course topics—that are crucial for carrying out the analysis of structures. This work explores concepts through both theory and numerical examples, and covers the analytical and numerical approaches to stress analysis, as well as isotropic, metallic, and orthotropic composite material analyses.

Comprised of 13 chapters, this must-have resource:

Establishes the fundamentals of material behavior required for understanding the concepts of stress analysis Defines stress and strain, and elaborates on the basic concepts exposing the relationship between the two Discusses topics related to contact stresses and pressure vessels Introduces the different failure criteria and margins of safety calculations for ductile and brittle materials Illustrates beam analysis theory under various types of loading Introduces plate analysis theory Addresses elastic instability and the buckling of columns and plates Demonstrates the concept of fatigue and stress to life-cycle calculations Explores the application of energy methods for determining deflection and stresses of structural systems Highlights the numerical methods and finite element techniques most commonly used for the calculation of stress Presents stress analysis methods for composite laminates Explains fastener and joint connection analysis theory Provides MathCAD® sample simulation codes that can be used for fast and reliable stress analysis

Essentials of Mechanical Stress Analysis is a quintessential guide detailing topics related to stress and structural analysis for practicing stress analysts in mechanical, aerospace, civil, and materials engineering fields and serves as a reference for higher-level undergraduates and graduate students.

Better Understand the Relationship between Powertrain System Design and Its Control Integration

While powertrain system design and its control integration are traditionally divided into two different functional groups, a growing trend introduces the integration of more electronics (sensors, actuators, and controls) into the powertrain system. This has impacted the dynamics of the system, changing the traditional mechanical powertrain into a mechatronic powertrain, and creating new opportunities for improved efficiency. Design and Control of Automotive Propulsion Systems focuses on the ICE-based automotive powertrain system (while presenting the alternative powertrain systems where appropriate). Factoring in the multidisciplinary nature of the automotive propulsion system, this text does two things—adopts a holistic approach to the subject, especially focusing on the relationship between propulsion system design and its dynamics and electronic control, and covers all major propulsion system components, from internal combustion engines to transmissions and hybrid powertrains.

The book introduces the design, modeling, and control of the current automotive propulsion system, and addresses all three major subsystems: system level optimization over engines, transmissions, and hybrids (necessary for improving propulsion system efficiency and performance). It provides examples for developing control-oriented models for the engine, transmission, and hybrid. It presents the design principles for the powertrain and its key subsystems. It also includes tools for developing control systems and examples on integrating sensors, actuators, and electronic control to improve powertrain efficiency and performance. In addition, it presents analytical and experimental methods, explores recent achievements, and discusses future trends.

Comprised of five chapters containing the fundamentals as well as new research, this text:

Examines the design, modeling, and control of the internal combustion engine and its key subsystems: the valve actuation system, the fuel system, and the ignition system Expounds on the operating principles of the transmission system, the design of the clutch actuation system, and transmission dynamics and control Explores the hybrid powertrain, including the hybrid architecture analysis, the hybrid powertrain model, and the energy management strategies Explains the electronic control unit and its functionalities—the software-in-the-loop and hardware-in-the-loop techniques for developing and validating control systems

Design and Control of Automotive Propulsion Systems provides the background of the automotive propulsion system, highlights its challenges and opportunities, and shows the detailed procedures for calculating vehicle power demand and the associated powertrain operating conditions.

Brought to you by the creator of numerous bestselling handbooks, the Handbook of Energy Efficiency and Renewable Energy provides a thorough grounding in the analytic techniques and technological developments that underpin renewable energy use and environmental protection. The handbook emphasizes the engineering aspects of energy conservation and renewable energy. Taking a world view, the editors discuss key topics underpinning energy efficiency and renewable energy systems. They provide content at the forefront of the contemporary debate about energy and environmental futures. This is vital information for planning a secure energy future.

Practical in approach, the book covers technologies currently available or expected to be ready for implementation in the near future. It sets the stage with a survey of current and future world-wide energy issues, then explores energy policies and incentives for conservation and renewable energy, covers economic assessment methods for conservation and generation technologies, and discusses the environmental costs of various energy generation technologies. The book goes on to examine distributed generation and demand side management procedures and gives a perspective on the efficiencies, economics, and environmental costs of fossil and nuclear technologies.

Highlighting energy conservation as the cornerstone of a successful national energy strategy, the book covers energy management strategies for industry and buildings, HVAC controls, co-generation, and advances in specific technologies such as motors, lighting, appliances, and heat pumps. It explores energy storage and generation from renewable sources and underlines the role of infrastructure security and risk analysis in planning future energy transmission and storage systems. These features and more make the Handbook of Energy Efficiency and Renewable Energy the tool for designing the energy sources of the future.

©2019 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google|Location: United StatesLanguage: English (United States)
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.