Laser Applications in Medicine and Biology: Volume 3

Springer Science & Business Media
Free sample

Much of the material in this book represents a departure from that presented earlier in the series. Volumes 1 and 2 presented almost exclusively reviews by American authors of American work. As science is international, it is rare that in two different parts of the world large groups of researchers in the same field remain relatively uninformed about each other's work. However, during the time since the initiation of this series, a large body of research has grown up in Russia that is almost unknown outside, as the original reports are largely untranslated. For this reason, an extensive review is presented here of the entire field of Russian applications of lasers in medicine and biology. Although the author, Dr. Gamaleya, has not worked directly with many of the applications, he has a general background in laser usage and has received much help from his colleagues in assembling the material. His review is restricted to Russian research. This does not mean that he is unaware of Western advances, rather that he has restricted his material to the parts that are peculiarly Russian or are significant confir mations of earlier work. Some of the Russian developments are quite novel and will certainly suggest to the careful reader new interpretations of old data, and possibly even new lines of research. The mechanisms proposed for the interaction of the high-intensity monochromatic light from lasers with biological material continue to grow in complexity.
Read more
Collapse
Loading...

Additional Information

Publisher
Springer Science & Business Media
Read more
Collapse
Published on
Dec 6, 2012
Read more
Collapse
Pages
348
Read more
Collapse
ISBN
9781461573265
Read more
Collapse
Read more
Collapse
Best For
Read more
Collapse
Language
English
Read more
Collapse
Genres
Medical / General
Science / Biotechnology
Science / Life Sciences / Biochemistry
Technology & Engineering / Biomedical
Technology & Engineering / Engineering (General)
Read more
Collapse
Content Protection
This content is DRM protected.
Read more
Collapse

Reading information

Smartphones and Tablets

Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.

Laptops and Computers

You can read books purchased on Google Play using your computer's web browser.

eReaders and other devices

To read on e-ink devices like the Sony eReader or Barnes & Noble Nook, you'll need to download a file and transfer it to your device. Please follow the detailed Help center instructions to transfer the files to supported eReaders.
Introduction to Biomedical Engineering is a comprehensive survey text for biomedical engineering courses. It is the most widely adopted text across the BME course spectrum, valued by instructors and students alike for its authority, clarity and encyclopedic coverage in a single volume.

Biomedical engineers need to understand the wide range of topics that are covered in this text, including basic mathematical modeling; anatomy and physiology; electrical engineering, signal processing and instrumentation; biomechanics; biomaterials science and tissue engineering; and medical and engineering ethics.

Enderle and Bronzino tackle these core topics at a level appropriate for senior undergraduate students and graduate students who are majoring in BME, or studying it as a combined course with a related engineering, biology or life science, or medical/pre-medical course.

NEW: Each chapter in the 3rd Edition is revised and updated, with new chapters and materials on compartmental analysis, biochemical engineering, transport phenomena, physiological modeling and tissue engineering. Chapters on peripheral topics have been removed and made avaialblw online, including optics and computational cell biologyNEW: many new worked examples within chaptersNEW: more end of chapter exercises, homework problemsNEW: image files from the text available in PowerPoint format for adopting instructorsReaders benefit from the experience and expertise of two of the most internationally renowned BME educatorsInstructors benefit from a comprehensive teaching package including a fully worked solutions manual A complete introduction and survey of BMENEW: new chapters on compartmental analysis, biochemical engineering, and biomedical transport phenomenaNEW: revised and updated chapters throughout the book feature current research and developments in, for example biomaterials, tissue engineering, biosensors, physiological modeling, and biosignal processingNEW: more worked examples and end of chapter exercisesNEW: image files from the text available in PowerPoint format for adopting instructorsAs with prior editions, this third edition provides a historical look at the major developments across biomedical domains and covers the fundamental principles underlying biomedical engineering analysis, modeling, and designBonus chapters on the web include: Rehabilitation Engineering and Assistive Technology, Genomics and Bioinformatics, and Computational Cell Biology and Complexity
MUST WE AGE?
A long life in a healthy, vigorous, youthful body has always been one of humanity's greatest dreams. Recent progress in genetic manipulations and calorie-restricted diets in laboratory animals hold forth the promise that someday science will enable us to exert total control over our own biological aging.
Nearly all scientists who study the biology of aging agree that we will someday be able to substantially slow down the aging process, extending our productive, youthful lives. Dr. Aubrey de Grey is perhaps the most bullish of all such researchers. As has been reported in media outlets ranging from 60 Minutes to The New York Times, Dr. de Grey believes that the key biomedical technology required to eliminate aging-derived debilitation and death entirely—technology that would not only slow but periodically reverse age-related physiological decay, leaving us biologically young into an indefinite future—is now within reach.

In Ending Aging, Dr. de Grey and his research assistant Michael Rae describe the details of this biotechnology. They explain that the aging of the human body, just like the aging of man-made machines, results from an accumulation of various types of damage. As with man-made machines, this damage can periodically be repaired, leading to indefinite extension of the machine's fully functional lifetime, just as is routinely done with classic cars. We already know what types of damage accumulate in the human body, and we are moving rapidly toward the comprehensive development of technologies to remove that damage. By demystifying aging and its postponement for the nonspecialist reader, de Grey and Rae systematically dismantle the fatalist presumption that aging will forever defeat the efforts of medical science.

The entire scope of the BioMEMS field—at your fingertips
Helping to educate the new generation of engineers and biologists, Introduction to BioMEMS explains how certain problems in biology and medicine benefit from and often require the miniaturization of devices. The book covers the whole breadth of this dynamic field, including classical microfabrication, microfluidics, tissue engineering, cell-based and noncell-based devices, and implantable systems. It focuses on high-impact, creative work encompassing all the scales of life—from biomolecules to cells, tissues, and organisms.

Brilliant color presentation
Avoiding the overwhelming details found in many engineering and physics texts, this groundbreaking book—in color throughout—includes only the most essential formulas as well as many noncalculation-based exercises. Important terms are highlighted in bold and defined in a glossary. The text contains more than 400 color figures, most of which are from the original researchers.

Coverage of both historical perspectives and the latest developments
Developed from the author’s long-running course, this classroom-tested text gives readers a vivid picture of how the field has grown by presenting historical perspectives and a timeline of seminal discoveries. It also describes numerous state-of-the-art biomedical applications that benefit from "going small," including devices that record the electrical activity of brain cells, measure the diffusion of molecules in microfluidic channels, and allow for high-throughput studies of gene expression.

©2019 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google|Location: United StatesLanguage: English (United States)
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.