Field Arithmetic: Edition 3

Springer Science & Business Media
Free sample

Field Arithmetic explores Diophantine fields through their absolute Galois groups. This largely self-contained treatment starts with techniques from algebraic geometry, number theory, and profinite groups. Graduate students can effectively learn generalizations of finite field ideas. We use Haar measure on the absolute Galois group to replace counting arguments. New Chebotarev density variants interpret diophantine properties. Here we have the only complete treatment of Galois stratifications, used by Denef and Loeser, et al, to study Chow motives of Diophantine statements.

Progress from the first edition starts by characterizing the finite-field like P(seudo)A(lgebraically)C(losed) fields. We once believed PAC fields were rare. Now we know they include valuable Galois extensions of the rationals that present its absolute Galois group through known groups. PAC fields have projective absolute Galois group. Those that are Hilbertian are characterized by this group being pro-free. These last decade results are tools for studying fields by their relation to those with projective absolute group. There are still mysterious problems to guide a new generation: Is the solvable closure of the rationals PAC; and do projective Hilbertian fields have pro-free absolute Galois group (includes Shafarevich's conjecture)?

The third edition improves the second edition in two ways: First it removes many typos and mathematical inaccuracies that occur in the second edition (in particular in the references). Secondly, the third edition reports on five open problems (out of thirtyfour open problems of the second edition) that have been partially or fully solved since that edition appeared in 2005.

Read more
Collapse

About the author

Moshe Jarden (revised and considerably enlarged the book in 2004 (2nd edition) and revised again in 2007 (the present 3rd edition).


Born on 23 August, 1942 in Tel Aviv, Israel.

Education:
Ph.D. 1969 at the Hebrew University of Jerusalem on
"Rational Points of Algebraic Varieties over Large Algebraic Fields".
Thesis advisor: H. Furstenberg.
Habilitation at Heidelberg University, 1972, on
"Model Theory Methods in the Theory of Fields".

Positions:
Dozent, Heidelberg University, 1973-1974.
Seniour Lecturer, Tel Aviv University, 1974-1978
Associate Professor, Tel Aviv University, 1978-1982
Professor, Tel Aviv University, 1982-
Incumbent of the Cissie and Aaron Beare Chair,
Tel Aviv University. 1998-

Academic and Professional Awards
Fellowship of Alexander von Humboldt-Stiftung in Heidelberg, 1971-1973.
Fellowship of Minerva Foundation, 1982.
Chairman of the Israel Mathematical Society, 1986-1988.
Member of the Institute for Advanced Study, Princeton, 1983, 1988.
Editor of the Israel Journal of Mathematics, 1992-.
Landau Prize for the book "Field Arithmetic". 1987.
Director of the Minkowski Center for Geometry founded by the
Minerva Foundation, 1997-.
L. Meitner-A.v.Humboldt Research Prize, 2001
Member, Max-Planck Institut f\"ur Mathematik in Bonn, 2001.


Read more
Collapse
Loading...

Additional Information

Publisher
Springer Science & Business Media
Read more
Collapse
Published on
Apr 9, 2008
Read more
Collapse
Pages
792
Read more
Collapse
ISBN
9783540772705
Read more
Collapse
Read more
Collapse
Best For
Read more
Collapse
Language
English
Read more
Collapse
Genres
Mathematics / Algebra / Abstract
Mathematics / Algebra / General
Mathematics / General
Mathematics / Geometry / Algebraic
Mathematics / Geometry / General
Mathematics / History & Philosophy
Mathematics / Logic
Read more
Collapse
Content Protection
This content is DRM protected.
Read more
Collapse

Reading information

Smartphones and Tablets

Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.

Laptops and Computers

You can read books purchased on Google Play using your computer's web browser.

eReaders and other devices

To read on e-ink devices like the Sony eReader or Barnes & Noble Nook, you'll need to download a file and transfer it to your device. Please follow the detailed Help center instructions to transfer the files to supported eReaders.
Basic Algebra and Advanced Algebra systematically develop concepts and tools in algebra that are vital to every mathematician, whether pure or applied, aspiring or established. Together, the two books give the reader a global view of algebra and its role in mathematics as a whole.

Key topics and features of Advanced Algebra:

*Topics build upon the linear algebra, group theory, factorization of ideals, structure of fields, Galois theory, and elementary theory of modules as developed in Basic Algebra

*Chapters treat various topics in commutative and noncommutative algebra, providing introductions to the theory of associative algebras, homological algebra, algebraic number theory, and algebraic geometry

*Sections in two chapters relate the theory to the subject of Gröbner bases, the foundation for handling systems of polynomial equations in computer applications

*Text emphasizes connections between algebra and other branches of mathematics, particularly topology and complex analysis

*Book carries on two prominent themes recurring in Basic Algebra: the analogy between integers and polynomials in one variable over a field, and the relationship between number theory and geometry

*Many examples and hundreds of problems are included, along with hints or complete solutions for most of the problems

*The exposition proceeds from the particular to the general, often providing examples well before a theory that incorporates them; it includes blocks of problems that illuminate aspects of the text and introduce additional topics

Advanced Algebra presents its subject matter in a forward-looking way that takes into account the historical development of the subject. It is suitable as a text for the more advanced parts of a two-semester first-year graduate sequence in algebra. It requires of the reader only a familiarity with the topics developed in Basic Algebra.

©2019 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google|Location: United StatesLanguage: English (United States)
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.