Engineering Mechanics of Materials: Edition 3

Springer Science & Business Media
Free sample

4. 2 Solid Circular Shafts-Angle of Twist and Shearing Stresses 159 4. 3 Hollow Circular Shafts-Angle of Twist and Shearing Stresses 166 4. 4 Principal Stresses and Strains Associated with Torsion 173 4. 5 Analytical and Experimental Solutions for Torsion of Members of Noncircular Cross Sections 179 4. 6 Shearing Stress-Strain Properties 188 *4. 7 Computer Applications 195 5 Stresses in Beams 198 5. 1 Introduction 198 5. 2 Review of Properties of Areas 198 5. 3 Flexural Stresses due to Symmetric Bending of Beams 211 5. 4 Shear Stresses in Symmetrically Loaded Beams 230 *5. 5 Flexural Stresses due to Unsymmetric Bending of Beams 248 *5. 6 Computer Applications 258 Deflections of Beams 265 I 6. 1 Introduction 265 6. 2 Moment-Curvature Relationship 266 6. 3 Beam Deflections-Two Successive Integrations 268 6. 4 Derivatives of the Elastic Curve Equation and Their Physical Significance 280 6. 5 Beam Deflections-The Method of Superposition 290 6. 6 Construction of Moment Diagrams by Cantilever Parts 299 6. 7 Beam Deflections-The Area-Moment Method 302 *6. 8 Beam Deflections-Singularity Functions 319 *6. 9 Beam Deflections-Castigliano's Second Theorem 324 *6. 10 Computer Applications 332 7 Combined Stresses and Theories of Failure 336 7. 1 Introduction 336 7. 2 Axial and Torsional Stresses 336 Axial and Flexural Stresses 342 7. 3 Torsional and Flexural Stresses 352 7. 4 7. 5 Torsional, Flexural, and Axial Stresses 358 *7. 6 Theories of Failure 365 Computer Applications 378 *7.
Read more
Collapse
Loading...

Additional Information

Publisher
Springer Science & Business Media
Read more
Collapse
Published on
Dec 6, 2012
Read more
Collapse
Pages
693
Read more
Collapse
ISBN
9781461230229
Read more
Collapse
Read more
Collapse
Best For
Read more
Collapse
Language
English
Read more
Collapse
Genres
Science / Mechanics / General
Science / Physics / Condensed Matter
Science / Physics / General
Technology & Engineering / Civil / General
Technology & Engineering / Manufacturing
Technology & Engineering / Materials Science / General
Read more
Collapse
Content Protection
This content is DRM protected.
Read more
Collapse

Reading information

Smartphones and Tablets

Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.

Laptops and Computers

You can read books purchased on Google Play using your computer's web browser.

eReaders and other devices

To read on e-ink devices like the Sony eReader or Barnes & Noble Nook, you'll need to download a file and transfer it to your device. Please follow the detailed Help center instructions to transfer the files to supported eReaders.
Dr. Boris Medovar, a member of the Soviet Academy of Sciences, is a promi nent member of the E.O. Paton Electric Welding Institute in Kiev, one of the pre-eminent institutes of the USSR. The Paton Institute, internationally famous for its entrepreneurial efforts in electrical welding processes, is also famous for its application of electrically based processes in melting and remelting of high alloy and high-temperature materials. These include the ESR (electroslag re melting) process, the ESC (electroslag casting) process, skull remelting based on electron-beam processes, plasma arc processes, and electric arc processes. Along with the ESR process for ingot production is the commercial plasma arc remelt process for specialty steels, particularly where high nitrogen contents may be desired, as in austenitic stainless steels. Major industrial centers are now scattered throughout the USSR and are a major factor in high-alloy, high strength, low- and high-temperature materials. The ESR process was developed in response to the Western development of the VAR (vacuum arc remelting) process for producing very highly alloyed materials during the growth period of the jet engine age. The V AR and ESR processes utilize different purification and refinement processes that are extremely critical in very highly, complexly alloyed superalloys and high-speed tool steels. In water-cooled remelt systems, they also achieve relatively rapid (directional) solidification, minimizing segregation and coarse phase separation of undesir able impurity elements or elements that tend to form coarse brittle phases.
In recent years, "intelligent (sm. o. rt) structures antlllJ/stems" has become an emerging new research area that is multi-disciplinary in nature, requiring technical expertise from mechanical engineering, structural engineering, electrical engineering, applied mechanics, engineering mathematics, material science, computer science, biological science, etc. This technology is quite likely to contribute significant advancements in the design of high-performance structures, adaptive structures, high-precision systems, micro-systems, etc. Although this emerging area has been rapidly gathering momentum in the last few years, researchers are aware that to some extent only initial, but highly feasible studies of the concepts proposed have been conducted. It is obvious that many important, pertinent fundamental research subjects must yet be investigated and resolved in the near future. We have the privilege to invite a number of highly regarded research scientists and engineers to summarize and contribute the results of their years of research experience with the evolution of intelligent (smart) structures and systems to the collection of chapters contained in this book. Their research topics include current intelligent (smart) structures research activities, piezoelectric structures, shape memory alloy reinforced composites, applications of electrorheological fluids, intelligent sensor systems, adaptive precision trusses, damage detection, model refinement, control of axial moving continua, distributed transducers, etc. These subjects represent only a small portion of the complete picture; indeed, the fundamentally important development of smart or intelligent materials is not addressed in detail here.
This book covers the essential topics for a second-level course in strength of materials or mechanics of materials, with an emphasis on techniques that are useful for mechanical design. Design typically involves an initial conceptual stage during which many options are considered. At this stage, quick approximate analytical methods are crucial in determining which of the initial proposals are feasible. The ideal would be to get within 30% with a few lines of calculation. The designer also needs to develop experience as to the kinds of features in the geometry or the loading that are most likely to lead to critical conditions.

With this in mind, the author tries wherever possible to give a physical and even an intuitive interpretation to the problems under investigation. For example, students are encouraged to estimate the location of weak and strong bending axes and the resulting neutral axis of bending before performing calculations, and the author discusses ways of getting good accuracy with a simple one degree of freedom Rayleigh-Ritz approximation. Students are also encouraged to develop a feeling for structural deformation by performing simple experiments in their outside environment, such as estimating the radius to which an initially straight bar can be bent without producing permanent deformation, or convincing themselves of the dramatic difference between torsional and bending stiffness for a thin-walled open beam section by trying to bend and then twist a structural steel beam by hand-applied loads at one end.

In choosing dimensions for mechanical components, designers will expect to be guided by criteria of minimum weight, which with elementary calculations, generally leads to a thin-walled structure as an optimal solution. This consideration motivates the emphasis on thin-walled structures, but also demands that students be introduced to the limits imposed by structural instability. Emphasis is also placed on the effect of manufacturing errors on such highly-designed structures - for example, the effect of load misalignment on a beam with a large ratio between principal stiffness and the large magnification of initial alignment or loading errors in a strut below, but not too far below the buckling load.

Additional material can be found on http://extras.springer.com/ .

©2020 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google|Location: United StatesLanguage: English (United States)
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.