Rollout, Policy Iteration, and Distributed Reinforcement Learning

· Athena Scientific
2 reviews

About this ebook

The purpose of this book is to develop in greater depth some of the methods from the author's Reinforcement Learning and Optimal Control recently published textbook (Athena Scientific, 2019). In particular, we present new research, relating to systems involving multiple agents, partitioned architectures, and distributed asynchronous computation. We pay special attention to the contexts of dynamic programming/policy iteration and control theory/model predictive control. We also discuss in some detail the application of the methodology to challenging discrete/combinatorial optimization problems, such as routing, scheduling, assignment, and mixed integer programming, including the use of neural network approximations within these contexts.

The book focuses on the fundamental idea of policy iteration, i.e., start from some policy, and successively generate one or more improved policies. If just one improved policy is generated, this is called rollout, which, based on broad and consistent computational experience, appears to be one of the most versatile and reliable of all reinforcement learning methods. In this book, rollout algorithms are developed for both discrete deterministic and stochastic DP problems, and the development of distributed implementations in both multiagent and multiprocessor settings, aiming to take advantage of parallelism.

Approximate policy iteration is more ambitious than rollout, but it is a strictly off-line method, and it is generally far more computationally intensive. This motivates the use of parallel and distributed computation. One of the purposes of the monograph is to discuss distributed (possibly asynchronous) methods that relate to rollout and policy iteration, both in the context of an exact and an approximate implementation involving neural networks or other approximation architectures.

Much of the new research is inspired by the remarkable AlphaZero chess program, where policy iteration, value and policy networks, approximate lookahead minimization, and parallel computation all play an important role.

Ratings and reviews

2 reviews

About the author

Dimitri P. Bertsekas undergraduate studies were in engineering at the National Technical University of Athens, Greece. He obtained his MS in electrical engineering at the George Washington University, Wash. DC in 1969, and his Ph.D. in system science in 1971 at the Massachusetts Institute of Technology.

Dr. Bertsekas has held faculty positions with the Engineering-Economic Systems Dept., Stanford University (1971-1974) and the Electrical Engineering Dept. of the University of Illinois, Urbana (1974-1979). From 1979 to 2019 he was with the Electrical Engineering and Computer Science Department of the Massachusetts Institute of Technology (M.I.T.), where he served as McAfee Professor of Engineering. In 2019, he was appointed Fulton Professor of Computational Decision Making, and a full time faculty member at the department of Computer, Information, and Decision Systems Engineering at Arizona State University (ASU), Tempe, while maintaining a research position at MIT. His research spans several fields, including optimization, control, large-scale computation, and data communication networks, and is closely tied to his teaching and book authoring activities. He has written numerous research papers, and eighteen books and research monographs, several of which are used as textbooks in MIT and ASU classes. Most recently Dr Bertsekas has been focusing on reinforcement learning, and authored a textbook in 2019, and a research monograph on its distributed and multiagent implementation aspects in 2020.

Professor Bertsekas was awarded the INFORMS 1997 Prize for Research Excellence in the Interface Between Operations Research and Computer Science for his book "Neuro-Dynamic Programming", the 2000 Greek National Award for Operations Research, the 2001 ACC John R. Ragazzini Education Award, the 2009 INFORMS Expository Writing Award, the 2014 ACC Richard E. Bellman Control Heritage Award for "contributions to the foundations of deterministic and stochastic optimization-based methods in systems and control," the 2014 Khachiyan Prize for Life-Time Accomplishments in Optimization, the SIAM/MOS 2015 George B. Dantzig Prize, and the 2022 IEEE Control Systems Award. In 2018, he was awarded, jointly with his coauthor John Tsitsiklis, the INFORMS John von Neumann Theory Prize, for the contributions of the research monographs "Parallel and Distributed Computation" and "Neuro-Dynamic Programming". In 2001, he was elected to the United States National Academy of Engineering for "pioneering contributions to fundamental research, practice and education of optimization/control theory, and especially its application to data communication networks."

Dr. Bertsekas' recent books are "Introduction to Probability: 2nd Edition" (2008), "Convex Optimization Theory" (2009), "Dynamic Programming and Optimal Control," Vol. I, (2017), and Vol. II: (2012), "Abstract Dynamic Programming" (2018), "Convex Optimization Algorithms" (2015), "Reinforcement Learning and Optimal Control" (2019), and "Rollout, Policy Iteration, and Distributed Reinforcement Learning" (2020), all published by Athena Scientific.

Rate this book

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.