Chemistry and Physics of Solid Surfaces VI

Springer Series in Surface Sciences

Book 5
Springer Science & Business Media
Free sample

This volume contains review articles which were written by the invited speak ers of the seventh International Summer Institute in Surface Science (ISISS), held at the University of Wisconsin - Milwaukee in July 1985. The form of ISISS is a set of tutorial review lectures presented over a one-week period by internationally recognized experts on various aspects of surface science. Each speaker is asked, in addition, to write a review article on his lecture topic. No single volume in the series Chemistry and Physics of Solid Surfaces can possibly cover the entire field of modern surface science. However, the series as a whole is intended to provide experts and students alike with a comprehensive set of reviews and literature references, particularly empha sizing the gas-solid interface. The collected articles from previous Summer Institutes have been published under the following titles: Surface Science: Recent Progress and Perspectives, Crit. Rev. Solid State Sci. 4, 125-559 (1974) Chemistry and Physics of Solid Surfaces, Vols. I, II, and III (CRC Press, Boca Raton, FL 1976, 1979 and 1982), Vols. IV and V, Springer Ser. Chern. Phys., Vols. 20 and 35, (Springer, Berlin, Heidelberg 1982 and 1984). The field of catalysis, which has provided the major impetus for the de velopment of modern surface science, lost two of its pioneers during 1984 and 1985: Professors G.-M. Schwab (1899-1984) and p.k. Emmett (1900-1985).
Read more
Collapse
Loading...

Additional Information

Publisher
Springer Science & Business Media
Read more
Collapse
Published on
Dec 6, 2012
Read more
Collapse
Pages
667
Read more
Collapse
ISBN
9783642827273
Read more
Collapse
Read more
Collapse
Best For
Read more
Collapse
Language
English
Read more
Collapse
Genres
Science / Chemistry / Physical & Theoretical
Science / Physics / Condensed Matter
Science / Physics / General
Technology & Engineering / Materials Science / General
Read more
Collapse
Content Protection
This content is DRM protected.
Read more
Collapse

Reading information

Smartphones and Tablets

Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.

Laptops and Computers

You can read books purchased on Google Play using your computer's web browser.

eReaders and other devices

To read on e-ink devices like the Sony eReader or Barnes & Noble Nook, you'll need to download a file and transfer it to your device. Please follow the detailed Help center instructions to transfer the files to supported eReaders.
Surface crystallography plays the same fundamental role in surface science which bulk crystallography has played so successfully in solid-state physics and chemistry. The atomic-scale structure is one of the most important aspects in the understanding of the behavior of surfaces in such widely diverse fields as heterogeneous catalysis, microelectronics, adhesion, lubrication, cor rosion, coatings, and solid-solid and solid-liquid interfaces. Low-Energy Electron Diffraction or LEED has become the prime tech nique used to determine atomic locations at surfaces. On one hand, LEED has yielded the most numerous and complete structural results to date (almost 200 structures), while on the other, LEED has been regarded as the "technique to beat" by a variety of other surface crystallographic methods, such as photoemission, SEXAFS, ion scattering and atomic diffraction. Although these other approaches have had impressive successes, LEED has remained the most productive technique and has shown the most versatility of application: from adsorbed rare gases, to reconstructed surfaces of sem iconductors and metals, to molecules adsorbed on metals. However, these statements should not be viewed as excessively dogmatic since all surface sensitive techniques retain untapped potentials that will undoubtedly be explored and exploited. Moreover, surface science remains a multi-technique endeavor. In particular, LEED never has been and never will be self sufficient. LEED has evolved considerably and, in fact, has reached a watershed.
This volume contains review articles written by the invited speakers at the eighth International Summer Institute in Surface Science (ISISS 1987), held at the University of Wisconsin-Milwaukee in August of 1987. During the course of ISISS, invited speakers, all internationally recognized experts in the various fields of surface science, present tutorial review lectures. In addition, these experts are asked to write review articles on their lecture topic. Former ISISS speakers serve as advisors concerning the selection of speakers and lecture topics. Em phasis is given to those areas which have not been covered in depth by recent Summer Institutes, as well as to areas which have recently gained in significance and in which important progress has been made. Because of space limitations, no individual volume of Chemistry and Physics of Solid Surfaces can possibly cover the whole area of modem surface science, or even give a complete survey of recent pro gress in the field. However, an attempt is made to present a balanced overview in the series as a whole. With its comprehensive literature references and extensive subject indices, this series has become a valu able resource for experts and students alike. The collected articles, which stress particularly the gas-solid interface, have been published under the following titles: Surface Science: Recent Progress and Perspectives, Crit. Rev. Solid State Sci. 4, 125-559 (1974) Chemistry and Physics of Solid Surfaces, Vols. I, II, and III (CRC Press Boca Raton, FL 1976, 1979, and 1982); Vols.
Advances in nanoscale science show that the properties of many materials are dominated by internal structures. In molecular cases, such as window glass and proteins, these internal structures obviously have a network character. However, in many partly disordered electronic materials, almost all attempts at understanding are based on traditional continuum models. This workshop focuses first on the phase diagrams and phase transitions of materials known to be composed of molecular networks. These phase properties characteristically contain remarkable features, such as intermediate phases that lead to reversibility windows in glass transitions as functions of composition. These features arise as a result of self-organization of the internal structures of the intermediate phases. In the protein case, this self-organization is the basis for protein folding.
The second focus is on partly disordered electronic materials whose phase properties exhibit the same remarkable features. In fact, the phenomenon of High Temperature Superconductivity, discovered by Bednorz and Mueller in 1986, and now the subject of 75,000 research papers, also arises from such an intermediate phase. More recently discovered electronic phenomena, such as giant magnetoresistance, also are made possible only by the existence of such special phases.
This book gives an overview of the methods and results obtained so far by studying the characteristics and properties of nanoscale self-organized networks. It demonstrates the universality of the network approach over a range of disciplines, from protein folding to the newest electronic materials.
This book provides a study in Bonding, Structure and Solid State Chemistry. It is based on lecture courses given over several years, but is not directed at any particular degree course. Thus, it will find a place in all years of first-degree courses in both chemistry and those subjects for which chemistry forms a significant part. It will also prepare readers for more intensive study in the title topics. Pre-knowledge is assumed in mathematics and physical sciences at about A-level. Additional mathematical and other topics are presented where necessary as appendices, so as not to disturb the flow of the main text. The book is copiously illustrated, including many stereoscopic diagrams (with practical advice on correct viewing) and colour illustrations. A suite of computer programs, some of which are interactive, has been devised for the book and is available on-line from the publisher's website [insert URL here]. They are available for both 32- and 64-bit operating systems, and are easily executed on a PC or laptop; notes on their applications are provided. Problems have been devised for each chapter and fully worked 'tutorial'; solutions are included. After an introductory chapter, the book presents a study based on the main interactive forces responsible for cohesion in the solid state of matter. No classification is without some ambiguity, but that chosen allows for a structured discussion over a wide range of compounds. Each chapter includes worked examples on the study topics which, together with the problems provided, should ensure a thorough understanding of the textual material.
Taking a straightforward, logical approach that emphasizes symmetry and crystal relationships, Foundations of Crystallography with Computer Applications, Second Edition provides a thorough explanation of the topic for students studying the solid state in chemistry, physics, materials science, geological sciences, and engineering. It is also written for scientists who want to teach themselves. Computers are an essential part of crystallography, and computer-based exercises are integrated into this book. The material is presented with the goal of creating an understanding of how atoms are arranged in crystals and how crystal systems are related to each other.

See What’s New in the Second Edition:

Eight new chapters that give detailed crystallographic analyses of one crystal chosen for each crystal system Numerous molecular examples and suggestions for student projects Coverage of special topics that naturally arise in the treatment of the crystals Suggestions for student projects with date that can be found in the free Teaching Subset of the Cambridge Structural Database Point group and space group diagrams have been color coded using a new scheme devised by the author to emphasize the change of handedness of the symmetry operations All the Starter Programs have been rewritten and improved, and a new one has been added in Chapter 6 on the graphing of intensity vs. 2θ for powder diffraction data New appendices contain detailed information about the 32 three-dimensional point groups and the 10 two-dimensional point groups

The book explains the individual entities, such as symmetry operations, and also explains how they fit together in a larger context. Coverage includes lattices, symmetry operations, metric matrices, point groups, space groups, reciprocal lattices, properties of x-rays, and electron density maps, all leading to a formal description of the crystal structures and an interpretation of the published crystallographic data. The author connects general properties such as the piezoelectric effect, compressibility, thermal expansion, and Mosely’s relationship in ordering the elements of the periodic table giving students a thorough foundation in the subject.

Surface crystallography plays the same fundamental role in surface science which bulk crystallography has played so successfully in solid-state physics and chemistry. The atomic-scale structure is one of the most important aspects in the understanding of the behavior of surfaces in such widely diverse fields as heterogeneous catalysis, microelectronics, adhesion, lubrication, cor rosion, coatings, and solid-solid and solid-liquid interfaces. Low-Energy Electron Diffraction or LEED has become the prime tech nique used to determine atomic locations at surfaces. On one hand, LEED has yielded the most numerous and complete structural results to date (almost 200 structures), while on the other, LEED has been regarded as the "technique to beat" by a variety of other surface crystallographic methods, such as photoemission, SEXAFS, ion scattering and atomic diffraction. Although these other approaches have had impressive successes, LEED has remained the most productive technique and has shown the most versatility of application: from adsorbed rare gases, to reconstructed surfaces of sem iconductors and metals, to molecules adsorbed on metals. However, these statements should not be viewed as excessively dogmatic since all surface sensitive techniques retain untapped potentials that will undoubtedly be explored and exploited. Moreover, surface science remains a multi-technique endeavor. In particular, LEED never has been and never will be self sufficient. LEED has evolved considerably and, in fact, has reached a watershed.
©2019 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google|Location: United StatesLanguage: English (United States)
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.