Metalloproteins: Theory, Calculations, and Experiments

CRC Press
Free sample

Numerous essential biological functions involve metalloproteins; therefore, understanding metalloproteins and how to manipulate them is significant in the biological and medical fields. An examination of current research, Metalloproteins: Theory, Calculations, and Experiments explores the interplay between theory and experiment, detailing the role of theoretical modeling in the field and explaining how it aids experiments. The text also presents the current state of computational protein modeling, enabling researchers to adopt computation as an integral component of their studies.

This book addresses two different aspects on metalloproteins in unison. It reviews the development of theoretical and computational methods for metalloprotein simulation with specific examples. The authors also present some of the most intriguing and important experimental results on metalloprotein systems. Although a connection can be made between these two aspects of the research, the authors do not do so explicitly. Rather, they provide the platform required to ignite further collaboration between experimentalists and theoreticians.

A collection of works from top researchers in this field, the text presents diverse subjects that comprehensively reflect the current state of metalloprotein research. With these advances in structural information, theory and computation are starting to play a more significant role, particularly in identifying the reaction mechanism. The book summarizes some of the recent progress in both experiments and theory/computation showing the synergy that is now developing.

Read more

About the author

William Andrew Goddard III is the Charles and Mary Ferkel Professor of Chemistry and Applied Physics, and director of the Materials and Process Simulation Center at the California Institute of Technology. He earned his BS from the University of California, Los Angeles, in 1960 and his PhD from the California Institute of Technology in 1965. After his PhD, he remained at the California Institute of Technology as Arthur Amos Noyes Research Fellow (1964–1966), professor of theoretical chemistry (1967–1978), and professor of chemistry and applied physics (1978–).

Dr. Goddard has pioneering methods for quantum mechanics (generalized valence bond theory, first principles pseudo potentials) and reactive fields molecular dynamics (ReaxFF and eFF), and complete sampling for protein structure prediction and docking (GEnSeMBLE and DarwinDock) which he has applied to many areas of chemical reaction theory, catalysis, materials science, and selective ligand design. He has been a member of the US National Academy of Sciences since 1984 and is a fellow (IAQMS, APS, AAAS, Am. Acad. Arts Science) or a member (ACS, MRS, Protein Society) of many other organizations. He was a cofounder of Materials Simulation Inc. and Schrodinger Inc. and continues with recent startups in electron etching of semiconductors (Systine) and design of therapeutics (GIRx).

Art E. Cho is Professor in the Department of Bioinformatics, Korea University. He graduated from the University of California at Berkeley in 1988, with a double major in physics and mathematics. After completing the master’s program in mathematics at the University of Chicago, he pursued a PhD in physics at Brown University. Before finishing his PhD, he took time off and returned to his home country of Korea to fulfill mandatory military duty. As a substitution for service in the army, he worked as a senior research scientist at the supercomputing center of Samsung Advanced Institute of Technology affiliated with Samsung Electronics Co. After earning a PhD in physics in 2001, he worked as a postdoctoral scholar at Caltech and then as a research scientist at Columbia University. He also worked as an applications scientist at Schrodinger Inc. Since 2007, he has been at Korea University. In 2010, while taking up a departmental duty as the chair, he founded a startup company, named Quantum Bio Solutions, which specializes in computational drug design.

Read more

Reviews

Loading...

Additional Information

Publisher
CRC Press
Read more
Published on
Apr 17, 2015
Read more
Pages
294
Read more
ISBN
9781439813195
Read more
Read more
Best For
Read more
Language
English
Read more
Genres
Science / Chemistry / Physical & Theoretical
Science / Life Sciences / Biophysics
Science / Physics / General
Technology & Engineering / Biomedical
Read more
Content Protection
This content is DRM protected.
Read more
Eligible for Family Library

Reading information

Smartphones and Tablets

Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.

Laptops and Computers

You can read books purchased on Google Play using your computer's web browser.

eReaders and other devices

To read on e-ink devices like the Sony eReader or Barnes & Noble Nook, you'll need to download a file and transfer it to your device. Please follow the detailed Help center instructions to transfer the files to supported eReaders.
William A. Goddard III
Johnjoe McFadden
Aubrey de Grey
MUST WE AGE?
A long life in a healthy, vigorous, youthful body has always been one of humanity's greatest dreams. Recent progress in genetic manipulations and calorie-restricted diets in laboratory animals hold forth the promise that someday science will enable us to exert total control over our own biological aging.
Nearly all scientists who study the biology of aging agree that we will someday be able to substantially slow down the aging process, extending our productive, youthful lives. Dr. Aubrey de Grey is perhaps the most bullish of all such researchers. As has been reported in media outlets ranging from 60 Minutes to The New York Times, Dr. de Grey believes that the key biomedical technology required to eliminate aging-derived debilitation and death entirely—technology that would not only slow but periodically reverse age-related physiological decay, leaving us biologically young into an indefinite future—is now within reach.

In Ending Aging, Dr. de Grey and his research assistant Michael Rae describe the details of this biotechnology. They explain that the aging of the human body, just like the aging of man-made machines, results from an accumulation of various types of damage. As with man-made machines, this damage can periodically be repaired, leading to indefinite extension of the machine's fully functional lifetime, just as is routinely done with classic cars. We already know what types of damage accumulate in the human body, and we are moving rapidly toward the comprehensive development of technologies to remove that damage. By demystifying aging and its postponement for the nonspecialist reader, de Grey and Rae systematically dismantle the fatalist presumption that aging will forever defeat the efforts of medical science.

Geoffrey West
"This is science writing as wonder and as inspiration." —The Wall Street Journal

Wall Street Journal

From one of the most influential scientists of our time, a dazzling exploration of the hidden laws that govern the life cycle of everything from plants and animals to the cities we live in.

Visionary physicist Geoffrey West is a pioneer in the field of complexity science, the science of emergent systems and networks. The term “complexity” can be misleading, however, because what makes West’s discoveries so beautiful is that he has found an underlying simplicity that unites the seemingly complex and diverse phenomena of living systems, including our bodies, our cities and our businesses.

Fascinated by aging and mortality, West applied the rigor of a physicist to the biological question of why we live as long as we do and no longer. The result was astonishing, and changed science: West found that despite the riotous diversity in mammals, they are all, to a large degree, scaled versions of each other. If you know the size of a mammal, you can use scaling laws to learn everything from how much food it eats per day, what its heart-rate is, how long it will take to mature, its lifespan, and so on. Furthermore, the efficiency of the mammal’s circulatory systems scales up precisely based on weight: if you compare a mouse, a human and an elephant on a logarithmic graph, you find with every doubling of average weight, a species gets 25% more efficient—and lives 25% longer. Fundamentally, he has proven, the issue has to do with the fractal geometry of the networks that supply energy and remove waste from the organism’s body.

West’s work has been game-changing for biologists, but then he made the even bolder move of exploring his work’s applicability. Cities, too, are constellations of networks and laws of scalability relate with eerie precision to them. Recently, West has applied his revolutionary work to the business world. This investigation has led to powerful insights into why some companies thrive while others fail. The implications of these discoveries are far-reaching, and are just beginning to be explored. Scale is a thrilling scientific adventure story about the elemental natural laws that bind us together in simple but profound ways. Through the brilliant mind of Geoffrey West, we can envision how cities, companies and biological life alike are dancing to the same simple, powerful tune.
Art E. Cho
Numerous essential biological functions involve metalloproteins; therefore, understanding metalloproteins and how to manipulate them is significant in the biological and medical fields. An examination of current research, Metalloproteins: Theory, Calculations, and Experiments explores the interplay between theory and experiment, detailing the role of theoretical modeling in the field and explaining how it aids experiments. The text also presents the current state of computational protein modeling, enabling researchers to adopt computation as an integral component of their studies.

This book addresses two different aspects on metalloproteins in unison. It reviews the development of theoretical and computational methods for metalloprotein simulation with specific examples. The authors also present some of the most intriguing and important experimental results on metalloprotein systems. Although a connection can be made between these two aspects of the research, the authors do not do so explicitly. Rather, they provide the platform required to ignite further collaboration between experimentalists and theoreticians.

A collection of works from top researchers in this field, the text presents diverse subjects that comprehensively reflect the current state of metalloprotein research. With these advances in structural information, theory and computation are starting to play a more significant role, particularly in identifying the reaction mechanism. The book summarizes some of the recent progress in both experiments and theory/computation showing the synergy that is now developing.

William A. Goddard III
©2018 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.