Visualization Analysis and Design

CRC Press
2
Free sample

Learn How to Design Effective Visualization Systems

Visualization Analysis and Design provides a systematic, comprehensive framework for thinking about visualization in terms of principles and design choices. The book features a unified approach encompassing information visualization techniques for abstract data, scientific visualization techniques for spatial data, and visual analytics techniques for interweaving data transformation and analysis with interactive visual exploration. It emphasizes the careful validation of effectiveness and the consideration of function before form.

The book breaks down visualization design according to three questions: what data users need to see, why users need to carry out their tasks, and how the visual representations proposed can be constructed and manipulated. It walks readers through the use of space and color to visually encode data in a view, the trade-offs between changing a single view and using multiple linked views, and the ways to reduce the amount of data shown in each view. The book concludes with six case studies analyzed in detail with the full framework.

The book is suitable for a broad set of readers, from beginners to more experienced visualization designers. It does not assume any previous experience in programming, mathematics, human–computer interaction, or graphic design and can be used in an introductory visualization course at the graduate or undergraduate level.

Read more
3.5
2 total
Loading...

Additional Information

Publisher
CRC Press
Read more
Published on
Sep 15, 2015
Read more
Pages
428
Read more
ISBN
9781498759717
Read more
Language
English
Read more
Genres
Business & Economics / Statistics
Computers / Computer Graphics
Computers / Databases / General
Computers / General
Computers / Social Aspects / Human-Computer Interaction
Technology & Engineering / Industrial Health & Safety
Read more
Content Protection
This content is DRM protected.
Read more
Read Aloud
Available on Android devices
Read more
Eligible for Family Library

Reading information

Smartphones and Tablets

Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.

Laptops and Computers

You can read books purchased on Google Play using your computer's web browser.

eReaders and other devices

To read on e-ink devices like the Sony eReader or Barnes & Noble Nook, you'll need to download a file and transfer it to your device. Please follow the detailed Help center instructions to transfer the files to supported eReaders.
Displaying multiple levels of data visually has been proposed to address the challenge of limited screen space. Although many previous empirical studies have addressed different aspects of this question, the information visualization research community does not currently have a clearly articulated consensus on how, when, or even if displaying data at multiple levels is effective. To shed more light on this complex topic, we conducted a systematic review of 22 existing multi-level interface studies to extract high-level design guidelines. To facilitate discussion, we cast our analysis findings into a four-point decision tree: (1) When are multi-level displays useful? (2) What should the higher visual levels display? (3) Should the different visual levels be displayed simultaneously, or one at a time? (4) Should the visual levels be embedded in a single display, or separated into multiple displays? Our analysis resulted in three design guidelines: (1) the number of levels in display and data should match; (2) high visual levels should only display task-relevant information; (3) simultaneous display, rather than temporal switching, is suitable for tasks with multi-level answers. Table of Contents: Introduction / Terminology / Methodology / Summary of Studies / Decision 1: Single or Multi-level Interface? / Decision 2: How to Create the High-Level Displays? / Decision 3: Simultaneous or Temporal Displays of the Multiple Visual Levels / Decision 4: How to Spatially Arrange the Visual Levels, Embedded or Separate? / Limitations of Study / Design Recommendations / Discussion and Future Work
Displaying multiple levels of data visually has been proposed to address the challenge of limited screen space. Although many previous empirical studies have addressed different aspects of this question, the information visualization research community does not currently have a clearly articulated consensus on how, when, or even if displaying data at multiple levels is effective. To shed more light on this complex topic, we conducted a systematic review of 22 existing multi-level interface studies to extract high-level design guidelines. To facilitate discussion, we cast our analysis findings into a four-point decision tree: (1) When are multi-level displays useful? (2) What should the higher visual levels display? (3) Should the different visual levels be displayed simultaneously, or one at a time? (4) Should the visual levels be embedded in a single display, or separated into multiple displays? Our analysis resulted in three design guidelines: (1) the number of levels in display and data should match; (2) high visual levels should only display task-relevant information; (3) simultaneous display, rather than temporal switching, is suitable for tasks with multi-level answers. Table of Contents: Introduction / Terminology / Methodology / Summary of Studies / Decision 1: Single or Multi-level Interface? / Decision 2: How to Create the High-Level Displays? / Decision 3: Simultaneous or Temporal Displays of the Multiple Visual Levels / Decision 4: How to Spatially Arrange the Visual Levels, Embedded or Separate? / Limitations of Study / Design Recommendations / Discussion and Future Work
Designing a complete visualization system involves many subtle decisions. When designing a complex, real-world visualization system, such decisions involve many types of constraints, such as performance, platform (in)dependence, available programming languages and styles, user-interface toolkits, input/output data format constraints, integration with third-party code, and more.

Focusing on those techniques and methods with the broadest applicability across fields, the second edition of Data Visualization: Principles and Practice provides a streamlined introduction to various visualization techniques. The book illustrates a wide variety of applications of data visualizations, illustrating the range of problems that can be tackled by such methods, and emphasizes the strong connections between visualization and related disciplines such as imaging and computer graphics. It covers a wide range of sub-topics in data visualization: data representation; visualization of scalar, vector, tensor, and volumetric data; image processing and domain modeling techniques; and information visualization.

See What’s New in the Second Edition:

Additional visualization algorithms and techniques New examples of combined techniques for diffusion tensor imaging (DTI) visualization, illustrative fiber track rendering, and fiber bundling techniques Additional techniques for point-cloud reconstruction Additional advanced image segmentation algorithms Several important software systems and libraries

Algorithmic and software design issues are illustrated throughout by (pseudo)code fragments written in the C++ programming language. Exercises covering the topics discussed in the book, as well as datasets and source code, are also provided as additional online resources.

Displaying multiple levels of data visually has been proposed to address the challenge of limited screen space. Although many previous empirical studies have addressed different aspects of this question, the information visualization research community does not currently have a clearly articulated consensus on how, when, or even if displaying data at multiple levels is effective. To shed more light on this complex topic, we conducted a systematic review of 22 existing multi-level interface studies to extract high-level design guidelines. To facilitate discussion, we cast our analysis findings into a four-point decision tree: (1) When are multi-level displays useful? (2) What should the higher visual levels display? (3) Should the different visual levels be displayed simultaneously, or one at a time? (4) Should the visual levels be embedded in a single display, or separated into multiple displays? Our analysis resulted in three design guidelines: (1) the number of levels in display and data should match; (2) high visual levels should only display task-relevant information; (3) simultaneous display, rather than temporal switching, is suitable for tasks with multi-level answers. Table of Contents: Introduction / Terminology / Methodology / Summary of Studies / Decision 1: Single or Multi-level Interface? / Decision 2: How to Create the High-Level Displays? / Decision 3: Simultaneous or Temporal Displays of the Multiple Visual Levels / Decision 4: How to Spatially Arrange the Visual Levels, Embedded or Separate? / Limitations of Study / Design Recommendations / Discussion and Future Work
Displaying multiple levels of data visually has been proposed to address the challenge of limited screen space. Although many previous empirical studies have addressed different aspects of this question, the information visualization research community does not currently have a clearly articulated consensus on how, when, or even if displaying data at multiple levels is effective. To shed more light on this complex topic, we conducted a systematic review of 22 existing multi-level interface studies to extract high-level design guidelines. To facilitate discussion, we cast our analysis findings into a four-point decision tree: (1) When are multi-level displays useful? (2) What should the higher visual levels display? (3) Should the different visual levels be displayed simultaneously, or one at a time? (4) Should the visual levels be embedded in a single display, or separated into multiple displays? Our analysis resulted in three design guidelines: (1) the number of levels in display and data should match; (2) high visual levels should only display task-relevant information; (3) simultaneous display, rather than temporal switching, is suitable for tasks with multi-level answers. Table of Contents: Introduction / Terminology / Methodology / Summary of Studies / Decision 1: Single or Multi-level Interface? / Decision 2: How to Create the High-Level Displays? / Decision 3: Simultaneous or Temporal Displays of the Multiple Visual Levels / Decision 4: How to Spatially Arrange the Visual Levels, Embedded or Separate? / Limitations of Study / Design Recommendations / Discussion and Future Work
©2018 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google|Location: United StatesLanguage: English (United States)
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.