Principles of Quantitative Living Systems Science

IFSR International Series in Systems Science and Systems Engineering

Book 13
Springer Science & Business Media
Free sample

In 1978, when the book Living Systems was published, it contained the prediction that the sciences that were concerned with the biological and social sciences would, in the future, be stated as rigorously as the “hard sciences” that study such nonliving phenomena as temperature, distance, and the interaction of chemical elements. Principles of Quantitative Living Systems Science, the first of a planned series of three books, begins an attempt to fulfill that prediction. The view that living things are similar to other parts of the physical world, differing only in their complexity, was explicitly stated in the early years of the twentieth century by the biologist Ludwig von Bertalanffy. His ideas could not be published until the end of the war in Europe in the 1940s. Von Bertalanffy was strongly opposed to vitalism, the theory current among biologists at the time that life could only be explained by recourse to a “vital principle” or God. He c- sidered living things to be a part of the natural order, “systems” like atoms and molecules and planetary systems. Systems were described as being made up of a number of interrelated and interdependent parts, but because of the interrelations, the total system became more than the sum of those parts. These ideas led to the development of systems movements, in both Europe and the United States, that included not only biologists but scientists in other fields as well. Systems societies were formed on both continents.
Read more
Collapse
Loading...

Additional Information

Publisher
Springer Science & Business Media
Read more
Collapse
Published on
Apr 11, 2006
Read more
Collapse
Pages
280
Read more
Collapse
ISBN
9780306469664
Read more
Collapse
Read more
Collapse
Best For
Read more
Collapse
Language
English
Read more
Collapse
Genres
Language Arts & Disciplines / Library & Information Science / General
Mathematics / Applied
Mathematics / General
Science / System Theory
Read more
Collapse
Content Protection
This content is DRM protected.
Read more
Collapse

Reading information

Smartphones and Tablets

Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.

Laptops and Computers

You can read books purchased on Google Play using your computer's web browser.

eReaders and other devices

To read on e-ink devices like the Sony eReader or Barnes & Noble Nook, you'll need to download a file and transfer it to your device. Please follow the detailed Help center instructions to transfer the files to supported eReaders.
This book is about the theory of system representations. The systems that are considered are linear, time-invariant, deterministic and finite dimensional. The observation that some representations are more suitable for handling a particular problem than others motivates the study of rep resentations. In modeling a system, a representation often arises naturally from certain laws that underlie the system. In its most general form the representation then consists of dynamical equations for the system compo nents and of constraint equations reflecting the connection between these components. Depending on the particular problem that is to be inves tigated, it will sometimes be useful to rewrite the equations, that is, to transform the representation. For this reason it is of special importance to derive transformations that enable one to switch from one representation to another. A new approach of the past decade has been the so-called "behavioral ap proach" introduced by Willems. One of the main features of the behavioral approach is that it is well suited for modeling the interconnection of sys tems. It is for this reason that the behavioral approach is a natural choice in the context of modeling. In this book we adopt the behavioral approach: we define a system as a "behavior" , that is, a set of trajectories whose math ematical representation by means of differential or difference equations is nonunique. An aspect of this approach that is important in the context of representation theory is the fact that a natural type of equivalence arises.
In the years following her role as the lead author of the international bestseller, Limits to Growth—the first book to show the consequences of unchecked growth on a finite planet— Donella Meadows remained a pioneer of environmental and social analysis until her untimely death in 2001.

Thinking in Systems, is a concise and crucial book offering insight for problem solving on scales ranging from the personal to the global. Edited by the Sustainability Institute’s Diana Wright, this essential primer brings systems thinking out of the realm of computers and equations and into the tangible world, showing readers how to develop the systems-thinking skills that thought leaders across the globe consider critical for 21st-century life.

Some of the biggest problems facing the world—war, hunger, poverty, and environmental degradation—are essentially system failures. They cannot be solved by fixing one piece in isolation from the others, because even seemingly minor details have enormous power to undermine the best efforts of too-narrow thinking.

While readers will learn the conceptual tools and methods of systems thinking, the heart of the book is grander than methodology. Donella Meadows was known as much for nurturing positive outcomes as she was for delving into the science behind global dilemmas. She reminds readers to pay attention to what is important, not just what is quantifiable, to stay humble, and to stay a learner.

In a world growing ever more complicated, crowded, and interdependent, Thinking in Systems helps readers avoid confusion and helplessness, the first step toward finding proactive and effective solutions.

©2019 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google|Location: United StatesLanguage: English (United States)
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.