Rotary-Wing Aerodynamics

Courier Corporation
1
Free sample

Recent literature related to rotary-wing aerodynamics has increased geometrically; yet, the field has long been without the benefit of a solid, practical basic text. To fill that void in technical data, NASA (National Aeronautics and Space Administration) commissioned the highly respected practicing engineers and authors W. Z. Stepniewski and C. N. Keys to write one. The result: Rotary-Wing Aerodynamics, a clear, concise introduction, highly recommended by U.S. Army experts, that provides students of helicopter and aeronautical engineering with an understanding of the aerodynamic phenomena of the rotor. In addition, it furnishes the tools for quantitative evaluation of both rotor performance and the helicopter as a whole. Now both volumes of the original have been reprinted together in this inexpensive Dover edition.
In Volume I: "Basic Theories of Rotor Aerodynamics," the concept of rotary-wing aircraft in general is defined, followed by comparison of the energy effectiveness of helicopters with that of other static-thrust generators in hover, as well as with various air and ground vehicles in forward translation. Volume II: "Performance Prediction of Helicopters" offers practical application of the rotary-wing aerodynamic theories discussed in Volume I, and contains complete and detailed performance calculations for conventional single-rotor, winged, and tandem-rotor helicopters.
Graduate students with some background in general aerodynamics, or those engaged in other fields of aeronautical or nonaeronautical engineering, will find this an essential and thoroughly practical reference text on basic rotor dynamics. While the material deals primarily with the conventional helicopter and its typical regimes of flight, Rotary-Wing Aerodynamics also provides a comprehensive insight into other fields of rotary-wing aircraft analysis as well.
Read more
Collapse
5.0
1 total
Loading...

Additional Information

Publisher
Courier Corporation
Read more
Collapse
Published on
Apr 22, 2013
Read more
Collapse
Pages
640
Read more
Collapse
ISBN
9780486318516
Read more
Collapse
Read more
Collapse
Read more
Collapse
Language
English
Read more
Collapse
Genres
Technology & Engineering / Aeronautics & Astronautics
Read more
Collapse
Content Protection
This content is DRM protected.
Read more
Collapse
Read Aloud
Available on Android devices
Read more
Collapse

Reading information

Smartphones and Tablets

Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.

Laptops and Computers

You can read books purchased on Google Play using your computer's web browser.

eReaders and other devices

To read on e-ink devices like the Sony eReader or Barnes & Noble Nook, you'll need to download a file and transfer it to your device. Please follow the detailed Help center instructions to transfer the files to supported eReaders.
"Most useful in working with wing sections and methods for using section data to predict wing characteristics . . . much detailed geometric and aerodynamic data." — Mechanical Engineering
The first edition of this work has been corrected and republished in answer to the continuing demand for a concise compilation of the subsonic aerodynamics characteristics of modern NASA wing sections together with a description of their geometry and associated theory. These wing sections, or their derivatives, continue to be the ones most commonly used for airplanes designed for both subsonic and supersonic speeds, and for helicopter rotor blades, propeller blades, and high performance fans.
Intended to be primarily a reference work for engineers and students, the book devotes over 300 pages to theoretical and experimental considerations. The theoretical treatment progresses from elementary considerations to methods used for the design of NACA low-drag airfoils. Methods and data are presented for using wingsection data to predict wing characteristics, and judiciously selected plots and cross-plots of experimental data are presented for readily useful correlation of certain simplifying assumptions made in the analyses. The chapters on theory of thin wings and airfoils are particularly valuable, as is the complete summary of the NACA's experimental observations and system of constructing families of airfoils. Mathematics has been kept to a minimum, but it is assumed that the reader has a knowledge of differential and integral calculus, and elementary mechanics.
The appendix of over 350 pages contains these tables: Basic Thickness Forms, Mean Lines, Airfoil Ordinates, and Aerodynamic Characteristics of Wing Sections.
Complete coverage of modern electrical and electronics systems for aircraft

Fully updated for the latest technological advances, this comprehensive text describes design concepts, FAA certification requirements, and aerospace-quality maintenance and repair techniques for aircraft electrical and electronics systems. The materials contained in this book will benefit designers, engineers, and technicians for all aircraft and aerospace vehicles. The requirements for the FAA Airframe and Powerplant Mechanic certification are also presented. The book contains new and revised information on:

The Airbus A-380 and the Boeing 787 Fiber-optic cable Brushless motors and modern sensors Variable frequency generators Very light jet electrical power systems Electronic maintenance data Advanced integrated test equipment GPS augmentation systems and satellite communications Flight data and cockpit voice recorders Synthetic vision and radar systems Integrated flight decks Flight management systems And much more

This thoroughly up-to-date resource leads you from the fundamentals of electron theory through to the study of aircraft digital control systems. In-depth details on AC and DC systems for virtually all varieties of aircraft--including the newest models--are provided. New and improved diagrams, an 8-page full-color insert, and helpful troubleshooting techniques are also included.

Aircraft Electricity and Electronics, Sixth Edition, covers: • Fundamentals of electricity • Applications of Ohm’s law • Aircraft storage batteries • Electric wire and wiring practices • Alternating current • Electrical control devices • Digital electronics • Electric measuring instruments • Electric motors • Generators and related control circuits • Alternators, inverters, and related controls • Power distribution systems • Design and maintenance of aircraft electrical systems • Radio theory • Communication and navigation systems • Weather warning and other safety systems • Instruments and autoflight systems
Basic Helicopter Aerodynamics is widely appreciated as an easily accessible, rounded introduction to the first principles of the aerodynamics of helicopter flight. Simon Newman has brought this third edition completely up to date with a full new set of illustrations and imagery. An accompanying website www.wiley.com/go/seddon contains all the calculation files used in the book, problems, solutions, PPT slides and supporting MATLAB® code.

Simon Newman addresses the unique considerations applicable to rotor UAVs and MAVs, and coverage of blade dynamics is expanded to include both flapping, lagging and ground resonance. New material is included on blade tip design, flow characteristics surrounding the rotor in forward flight, tail rotors, brown-out, blade sailing and shipborne operations.

Concentrating on the well-known Sikorsky configuration of single main rotor with tail rotor, early chapters deal with the aerodynamics of the rotor in hover, vertical flight, forward flight and climb. Analysis of these motions is developed to the stage of obtaining the principal results for thrust, power and associated quantities. Later chapters turn to the characteristics of the overall helicopter, its performance, stability and control, and the important field of aerodynamic research is discussed, with some reference also to aerodynamic design practice.

This introductory level treatment to the aerodynamics of helicopter flight will appeal to aircraft design engineers and undergraduate and graduate students in aircraft design, as well as practising engineers looking for an introduction to or refresher course on the subject.

©2019 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google|Location: United StatesLanguage: English (United States)
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.