Plant-derived Natural Products: Synthesis, Function, and Application

Springer Science & Business Media
Free sample

Plants produce a huge array of natural products (secondary metabolites). These compounds have important ecological functions, providing protection against attack by herbivores and microbes and serving as attractants for pollinators and seed-dispersing agents. They may also contribute to competition and invasiveness by suppressing the growth of neighboring plant species (a phenomenon known as allelopathy). Humans exploit natural products as sources of drugs, flavoring agents, fragrances and for a wide range of other applications. Rapid progress has been made in recent years in understanding natural product synthesis, regulation and function and the evolution of metabolic diversity. It is timely to bring this information together with contemporary advances in chemistry, plant biology, ecology, agronomy and human health to provide a comprehensive guide to plant-derived natural products.

Plant-derived natural products: synthesis, function and application provides an informative and accessible overview of the different facets of the field, ranging from an introduction to the different classes of natural products through developments in natural product chemistry and biology to ecological interactions and the significance of plant-derived natural products for humans. In the final section of the book a series of chapters on new trends covers metabolic engineering, genome-wide approaches, the metabolic consequences of genetic modification, developments in traditional medicines and nutraceuticals, natural products as leads for drug discovery and novel non-food crops.

Read more
Collapse

About the author

Professor Anne Osbourn is Head of the Department of Metabolic Biology at the John Innes Centre, Norwich, UK, where she runs a research programme on plant-derived natural products. Her research is focused on the synthesis and function of plant-derived natural products and on mechanisms underpinning metabolic diversification.

Professor Virginia Lanzotti is associate professor of organic chemistry at University of Molise, Campobasso, Italy and Meetings Secretary of the Phytochemical Society of Europe (PSE). Her research is focused on the stereostructure of natural products, drug discovery, food chemistry, and soil organic matter phytotoxicity. Winner of the 2003 PSE-Pierre Fabre award for excellence in phytochemistry.

Read more
Collapse
Loading...

Additional Information

Publisher
Springer Science & Business Media
Read more
Collapse
Published on
Jul 7, 2009
Read more
Collapse
Pages
597
Read more
Collapse
ISBN
9780387854984
Read more
Collapse
Read more
Collapse
Read more
Collapse
Language
English
Read more
Collapse
Genres
Science / Life Sciences / Biochemistry
Science / Life Sciences / Botany
Read more
Collapse
Content Protection
This content is DRM protected.
Read more
Collapse

Reading information

Smartphones and Tablets

Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.

Laptops and Computers

You can read books purchased on Google Play using your computer's web browser.

eReaders and other devices

To read on e-ink devices like the Sony eReader or Barnes & Noble Nook, you'll need to download a file and transfer it to your device. Please follow the detailed Help center instructions to transfer the files to supported eReaders.
This book focuses on the evolution of plant viruses, their molecular classification, epidemics and management, covering topics relating to evolutionary mechanisms, viral ecology and emergence, appropriate analysis methods, and the role of evolution in taxonomy. The currently emerging virus species are increasingly becoming a threat to our way of life, both economically and physically. Plant viruses are particularly significant as they affect our food supply and are capable of rapidly spreading to new plant species. In basic research, plant viruses have become useful models to analyze the molecular biology of plant gene regulation and cell-cell communication. The small size of DNA genome of viruses possesses minimal coding capacity and replicates in the host cell nucleus with the help of host plant cellular machinery. Thus, studying virus cellular processes provides a good basis for explaining DNA replication, transcription, mRNA processing, protein expression and gene silencing in plants. A better understanding of these cellular processes will help us design antiviral strategies for plants.

The book provides in-depth information on plant virus gene interactions with hosts, localization and expression and the latest advances in our understanding of plant virus evolution, their responses and crop improvement. Combining characterization of plant viruses and disease management and presenting them together makes it easy to compare all aspects of resistance, tolerance and management strategies. As such, it is a useful resource for molecular biologists and plant virologists alike.

This manual is intended for the practising chemist who has to do a job in analysing plant material. Therefore, the present manual only contains ready-to-hand procedures without any comment. The procedures described are only for inorganic components, which frequently occur in the plant. Most procedures are designed to give a total content value of the element under consideration, regardless of the chemical structure in which it occurs in the plant.

We have chosen for a design in which all digestion procedures are described in one chapter, all extraction procedures in one chapter and all determination procedures in one chapter. As a consequence, one has to choose a suitable digestion method in combination with the intended determination technique; this has been indicated within each individual determination procedure.

For determination of the elements, mainly spectrometric techniques are used here. Depending on the kind of element and the expected concentration level, the following methods are applied: flame atomic emission spectrometry (flame AES), flame atomic absorption spectrometry (flame AAS), inductively coupled plasma optical emission spectrometry (ICP-OES), electrothermal atomisation (graphite furnace) atomic absorption spectrometry (ETA-AAS), inductively coupled plasma mass spectrometry (ICP-MS), spectrophotometry and segmented flow analysis (SFA). Besides, potentiometry (ion selective electrodes (ISE)) and coulometry will be encountered. In many cases, more than one method is described to determine a component. This provides a reference, as well as an alternative in case of instrumental or analytical problems.

Considerable progress has been made in our healthcare system, in particular with respect to sensitive diagnostic tools, reagents and very effective and precise drugs. On the other hand, high-throughput screening technology can screen vast numbers of compounds against an array of targets in a very short time, and leads thus - tained can be further explored. In developing countries, the exploding population exerts pressure not only on natural resources but also on the human population - self, whose members strive to become successful and advance in society. This leads to increased blood pressure, anxiety, obesity-associated lipid disorders, cardiov- cular diseases and diabetes. Most of these diseases result in disturbed family life, including sexual behaviour. Despite technological developments, herbal drugs still occupy a preferential place in a majority of the population in the Third World and terminal patients in the West. Herbal drugs, in addition to being cost effective and easily accessible, have been used since time immemorial and have passed the test of time without having any side effects. The multitarget effects of herbs (holistic approaches) are the fun- mental basis of their utilization. This approach is already used in traditional systems of medicine like Ayurveda, which has become more popular in the West in recent years. However, the integration of modern science with traditional uses of herbal drugs is of the utmost importance if ones wishes to use ancient knowledge for the betterment of humanity.
Written by Leah Hechtman, Clinical Naturopathic Medicine is a foundation clinical text integrating the holistic traditional principles of naturopathic philosophy with the scientific rigour of evidence-based medicine (EBM) to support contemporary practices and principles. The text addresses all systems of the body and their related common conditions, with clear, accessible directions outlining how a practitioner can understand health from a naturopathic medicine and apply naturopathic medicines to treat patients individually. These treatments include herbal medicine, nutritional medicine and lifestyle recommendations. All chapters are structured by system and then by condition, so readers are easily able to navigate the content by chapter and heading structure.Systematic text structure to support reader engagementIntegrative naturopathic treatments for all conditions and systemsDetailed and extensively referenced interaction tables for nutritional (supplemental and dietary) and herbal medicines, plus pharmaceutical medicationsSkilfully bridges foundational traditional principles and practice of naturopathy with evidenced-based medicine to assist readers with their integration into the current healthcare systemNew chapters – Diagnostics, Case taking and treatment and Nutritional medicine (Dietary)Rigorously researched with over 10,000 references from the latest scientific papers and historical textsEvery section, chapter, system and condition has been expanded and updated to the latest recommendations
“The bard of biological weapons captures the drama of the front lines.”—Richard Danzig, former secretary of the navy

The first major bioterror event in the United States-the anthrax attacks in October 2001-was a clarion call for scientists who work with “hot” agents to find ways of protecting civilian populations against biological weapons. In The Demon in the Freezer, his first nonfiction book since The Hot Zone, a #1 New York Times bestseller, Richard Preston takes us into the heart of Usamriid, the United States Army Medical Research Institute of Infectious Diseases at Fort Detrick, Maryland, once the headquarters of the U.S. biological weapons program and now the epicenter of national biodefense.

Peter Jahrling, the top scientist at Usamriid, a wry virologist who cut his teeth on Ebola, one of the world’s most lethal emerging viruses, has ORCON security clearance that gives him access to top secret information on bioweapons. His most urgent priority is to develop a drug that will take on smallpox-and win. Eradicated from the planet in 1979 in one of the great triumphs of modern science, the smallpox virus now resides, officially, in only two high-security freezers-at the Centers for Disease Control in Atlanta and in Siberia, at a Russian virology institute called Vector. But the demon in the freezer has been set loose. It is almost certain that illegal stocks are in the possession of hostile states, including Iraq and North Korea. Jahrling is haunted by the thought that biologists in secret labs are using genetic engineering to create a new superpox virus, a smallpox resistant to all vaccines.

Usamriid went into a state of Delta Alert on September 11 and activated its emergency response teams when the first anthrax letters were opened in New York and Washington, D.C. Preston reports, in unprecedented detail, on the government’ s response to the attacks and takes us into the ongoing FBI investigation. His story is based on interviews with top-level FBI agents and with Dr. Steven Hatfill.

Jahrling is leading a team of scientists doing controversial experiments with live smallpox virus at CDC. Preston takes us into the lab where Jahrling is reawakening smallpox and explains, with cool and devastating precision, what may be at stake if his last bold experiment fails.
©2019 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google|Location: United StatesLanguage: English (United States)
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.