Hydrology and Water Resources of India

Water Science and Technology Library

Springer Science & Business Media
2
Free sample

India is endowed with varied topographical features, such as high mountains, extensive plateaus, and wide plains traversed by mighty rivers. Water is an important input in the socio-economic development of a nation. In India, this dependence is even more apparent, as 70% of her population is dependent on agriculture.

Divided into four sections the book provides a comprehensive overview of water resources of India. Beginning with a general description of the country, major hydrologic features, such as climate (precipitation, temperature, radiation, etc.), streamflow, groundwater, soil, etc. are discussed. A detailed treatment of all major river basins is provided, which includes description of catchments, tributaries, surface water and ground water, and important water resources projects. This is followed by a discussion on major uses of water in India, major projects, water related problems including environment and water quality, provisions of the constitution of India, interlinking of India rivers, and institutions dealing with water resources. Finally, the last chapter discusses some views on water management policy for India.

Audience
The book should be useful to Water Resources professionals, particularly those with an interest in India, graduate students, researchers, teachers, planners and policy makers.

Read more
Collapse
1.0
2 total
Loading...

Additional Information

Publisher
Springer Science & Business Media
Read more
Collapse
Published on
May 16, 2007
Read more
Collapse
Pages
1260
Read more
Collapse
ISBN
9781402051807
Read more
Collapse
Read more
Collapse
Best For
Read more
Collapse
Language
English
Read more
Collapse
Genres
Science / Earth Sciences / General
Science / Earth Sciences / Hydrology
Social Science / Human Geography
Technology & Engineering / Environmental / General
Technology & Engineering / Environmental / Water Supply
Read more
Collapse
Content Protection
This content is DRM protected.
Read more
Collapse

Reading information

Smartphones and Tablets

Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.

Laptops and Computers

You can read books purchased on Google Play using your computer's web browser.

eReaders and other devices

To read on e-ink devices like the Sony eReader or Barnes & Noble Nook, you'll need to download a file and transfer it to your device. Please follow the detailed Help center instructions to transfer the files to supported eReaders.
Following the end of World War II there was a major migra tion of population in the United States and Scandinavian countries to urban areas. As a result of this migration and in part due to the public works moratoria imposed during the war, a major pro gram of sewer construction was instigated, which resulted in the collection and subsequent concentration of large volumes of waste water at single discharge points. As the assimilative capacity of these receiving waters was exceeded, it led to or aggravated existing water pollution problems in these waters. To mitigate this degradation of water quality a massive program to construct wastewater treatment facilities was instigated. In addition, large amounts of money were spent on research to improve the technology of the conventional collection and treatment concept. In contrast, the wastewater disposal problem of the rural home owner received little attention, and in most cases the septic tank soil absorption system (ST-SAS) was the interim solution. In recent years there has been a fundamental change in the population growth pattern in the US and Scandinavian countries. It appears that a great many people are moving back to rural areas where they seem to prefer the suburban or small town envi ronment, yet at the same time want all the conveniences of urban life. The provision of proper wastewater disposal facilities presents a very perplexing problem, because the capital and operating costs of conventional sewers are usually financially impractical for rural areas.
Advances in computer technology, in the technology of communication and in mathematical modelling of processes in the hydrological cycle have recently improved our potential to protect ourselves against damage through floods and droughts and to control quantities and qualities in our water systems. This development was demonstrated in a 1983 post-experience course at Wageningen University where an international group of experts reviewed successful modelling techniques and described the design and operation of a number of forecasting and control systems in drainage basins and river reaches of various sizes and under various geographical and climat ological conditions. A special effort was made to bridge the gap between theory and practice; case studies showed that each forecasting system was designed to meet a set of specific requirements and they illustrated that the forecasting system can only be expected to operate reliably if, on the one hand, it is based on sound theoretical concepts and methods and if, on the other hand, it is robust so that, also under adverse conditions, it will continue to collect and process the necessary input data and produce correct and timely signals. We were pleased to meet with encouragement for preserving the course material and making it available to a wider public. This was effected by the team of authorf who elaborated, updated and harmonized the materia in two stages; first into an issue of our university department and finally into the manuscript of this book.
A special workshop on scale problems in hydrology was held at Princeton University, Princeton, New Jersey, during October 31-November 3, 1984. This workshop was the second in a series on this general topic. The proceedings of the first workshop, held in Caracas, Venezuela, in January 1982, appeared in the Journal of Hydrology (Volume 65:1/3, 1983). This book contains the papers presented at the second workshop. The scale problems in hydrology and other geophysical sciences stem from the recognition that the mathematical relationships describing a physical phenomenon are mostly scale dependent in the sense that different relationships manifest at different space-time scales. The broad scientific problem then is to identify and for mulate suitable relationships at the scales of practical interest, test them experimen tally and seek consistent analytical connections between these relationships and those known at other scales. For example, the current hydrologic theories of evaporation, infiltration, subsurface water transport and water sediment transport overland and in channels etc. derive mostly from laboratory experiments and therefore generally apply at "small" space-time scales. A rigorous extrapolation of these theories to large spatial and temporal basin scales, as mandated by practical considerations, appears very difficult. Consequently, analytical formulations of suitable hydrologic theories at basin wide space-time scales and their experimental verification is currently being perceived to be an exciting and challenging area of scientific research in hydrology. In order to successfully meet these challenges in the future, this series of workshops was initiated.
The demand for water resources is increasing day by day due to ever increasing population, mostly from developing countries. This has resulted in abstracting more water from the subsurface stratum and forcing the water managers to manage the limited groundwater resources in a more scientific way, which in turn needs a more sophisticated way of assessing the underground resource and manage it optimally. There is an urgent need to locate high yielding boreholes in the hard rock region by using geophysical methods. Electrical imaging technique in conjunction with remote sensing and geographical information system (GIS) technique has proved to be a potential tool for the purpose. Hydrodynamics of fractured aquifer system in hard rock region is not yet fully understood. The understanding of the groundwater pollution migration in porous and fractured aquifer system and the seawater intrusion in the coastal aquifer has to be improved further. Various aspects of groundwater modeling and in particular issues related to model calibration, validation and prediction has to be understood in much better way. One should integrate all the above issues for effective understanding of the assessment and management of groundwater resources. There is a need to have a comprehensive book to deal with all the above. My former colleague, Dr. M. Thangarajan, Retired Scientist-G, NGRI, Hyderabad, India has successfully edited a book on GROUNDWATER (Resource Evaluation, Augmentation, Contamination, Restoration, Modeling and Management) by inviting topics from various experts across the globe.
Entropy Theory and its Application in Environmental and Water Engineering responds to the need for a book that deals with basic concepts of entropy theory from a hydrologic and water engineering perspective and then for a book that deals with applications of these concepts to a range of water engineering problems. The range of applications of entropy is constantly expanding and new areas finding a use for the theory are continually emerging. The applications of concepts and techniques vary across different subject areas and this book aims to relate them directly to practical problems of environmental and water engineering.

The book presents and explains the Principle of Maximum Entropy (POME) and the Principle of Minimum Cross Entropy (POMCE) and their applications to different types of probability distributions. Spatial and inverse spatial entropy are important for urban planning and are presented with clarity. Maximum entropy spectral analysis and minimum cross entropy spectral analysis are powerful techniques for addressing a variety of problems faced by environmental and water scientists and engineers and are described here with illustrative examples.

Giving a thorough introduction to the use of entropy to measure the unpredictability in environmental and water systems this book will add an essential statistical method to the toolkit of postgraduates, researchers and academic hydrologists, water resource managers, environmental scientists and engineers. It will also offer a valuable resource for professionals in the same areas, governmental organizations, private companies as well as students in earth sciences, civil and agricultural engineering, and agricultural and rangeland sciences.

This book:

Provides a thorough introduction to entropy for beginners and more experienced users Uses numerous examples to illustrate the applications of the theoretical principles Allows the reader to apply entropy theory to the solution of practical problems Assumes minimal existing mathematical knowledge Discusses the theory and its various aspects in both univariate and bivariate cases Covers newly expanding areas including neural networks from an entropy perspective and future developments.
©2019 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google|Location: United StatesLanguage: English (United States)
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.