Soft Order in Physical Systems

Nato Science Series B

Book 323
Springer Science & Business Media
Free sample

A humoristic view of the physics of soft matter, which nevertheless has a ring of truth to it, is that it is an ill-defined subject which deals with ill-condensed matter by ill-defined methods. Although, since the Nobel prize was awarded to Pierre-Gilles de Gennes, this subject can be no longer shrugged-away as "sludge physics" by the physics community, it is still not viewed universally as "main stream" physics. While, at first glance, this may be considered as another example of inertia, a case of the "establishment" against the "newcomer", the roots of this prejudice are much deeper and can be traced back to Roger Bacon's conception about the objectivity of science. All of us would agree with the weaker form of this idea which simply says that the final results of our work should be phrased in an observer-independent way and be communicable to anybody who made the effort to learn this language. There exists, however, a stronger form of this idea according to which the above criteria of "objectivity" and "communicability" apply also to the process of scientific inquiry. The fact that major progress in the physics of soft matter was made in apparent violation of this approach, by applying intuition to problems which appeared to defy rigorous analysis, may explain why many physicists feel somewhat ill-at-ease with this subject.
Read more
Collapse
Loading...

Additional Information

Publisher
Springer Science & Business Media
Read more
Collapse
Published on
Dec 6, 2012
Read more
Collapse
Pages
236
Read more
Collapse
ISBN
9781461524588
Read more
Collapse
Read more
Collapse
Best For
Read more
Collapse
Language
English
Read more
Collapse
Genres
Science / Chemistry / Inorganic
Science / Chemistry / Organic
Science / Physics / Mathematical & Computational
Technology & Engineering / Materials Science / General
Technology & Engineering / Textiles & Polymers
Read more
Collapse
Content Protection
This content is DRM protected.
Read more
Collapse

Reading information

Smartphones and Tablets

Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.

Laptops and Computers

You can read books purchased on Google Play using your computer's web browser.

eReaders and other devices

To read on e-ink devices like the Sony eReader or Barnes & Noble Nook, you'll need to download a file and transfer it to your device. Please follow the detailed Help center instructions to transfer the files to supported eReaders.
A number of factors have come together in the last couple of decades to define the emerging interdisciplinary field of structural molecular biology. First, there has been the considerable growth in our ability to obtain atomic-resolution structural data for biological molecules in general, and proteins in particular. This is a result of advances in technique, both in x-ray crystallography, driven by the development of electronic detectors and of synchrotron radiation x-ray sources, and by the development ofNMR techniques which allow for inference of a three-dimensional structure of a protein in solution. Second, there has been the enormous development of techniques in DNA engineering which makes it possible to isolate and clone specific molecules of interest in sufficient quantities to enable structural measurements. In addition, the ability to mutate a given amino acid sequence at will has led to a new branch of biochemistry in which quantitative measurements can be made assessing the influence of a given amino acid on the function of a biological molecule. A third factor, resulting from the exponential increase in computing power available to researchers, has been the emergence of a growing body of people who can take the structural data and use it to build atomic-scale models of biomolecules in order to try and simulate their motions in an aqueous environment, thus helping to provide answers to one of the most basic questions of molecular biology: the relation of structure to function.
To the biochemist, water is, of course, the only solvent worthy of consideration, because natural macromolecules exhibit their remarkable conformational properties only in aqueous media. Probably because of these remarkable properties, biochemists do not tend to regard proteins, nucleotides and polysaccharides as polymers in the way that real polymer scientists regard methyl methacrylate and polyethylene. The laws of polymer statistics hardly apply to native biopolymers. Between these two powerful camps, lies the No-man's land of water soluble synthetic polymers: here, we must also include natural polymers which have been chemically modified. The scientific literature of these compounds is characterized by a large number of patents, which is usually a sign of little basic understanding, of 'know-how' rather than of 'know-why'. Many of the physical properties of such aqueous solutions are intriguing: the polymer may be completely miscible with water, and yet water is a 'poor' solvent, in terms of polymer parlance. ~kiny of the polymers form thermorever sible gels on heating or cooling. The phenomena of exothermic mixing and salting-in are common features of such systems: neither can be fully explained by the available theories. Finally, the eccentric behaviour of polyelectrolytes is well documented. Despite the lack of a sound physico-chemical foundation there is a general awareness of the importance of water soluble vinyl, acrylic, polyether, starch and cellulose derivatives, as witnessed again by ~he vast patent literature.
The first concern of scientists who are interested in synthetic polymers has always been, and still is: How are they synthesized? But right after this comes the question: What have I made, and for what is it good? This leads to the important topic of the structure-property relations to which this book is devoted. Polymers are very large and very complicated systems; their character ization has to begin with the chemical composition, configuration, and con formation of the individual molecule. The first chapter is devoted to this broad objective. The immediate physical consequences, discussed in the second chapter, form the basis for the physical nature of polymers: the supermolecular interactions and arrangements of the individual macromolecules. The third chapter deals with the important question: How are these chemical and physical structures experimentally determined? The existing methods for polymer characterization are enumerated and discussed in this chapter. The following chapters go into more detail. For most applications-textiles, films, molded or extruded objects of all kinds-the mechanical and the thermal behaviors of polymers are of pre ponderant importance, followed by optical and electric properties. Chapters 4 through 9 describe how such properties are rooted in and dependent on the chemical structure. More-detailed considerations are given to certain particularly important and critical properties such as the solubility and permeability of polymeric systems. Macromolecules are not always the final goal of the chemist-they may act as intermediates, reactants, or catalysts. This topic is presented in Chapters 10 and 11.
This book presents detailed discussions of several of the large scale applications of superconductivity which will have major economic impact on technical developments in the industrial world. The world wide concern with energy problems makes this work particularly timely. Some of the large scale devices and systems such as superconducting generators, motors, power transmission, large magnets, high speed ground transportation and industrial processing clearly speak directly to improved efficiencies of generation and utilization of energy. The articles treat each subject in depth. The text is suitable for advanced undergradu ate or graduate engineering or applied science courses. The text should also be of immediate use to practicing engineers and scientists in applied superconductivity. The unique summaries of national efforts in applied superconductivity will also be valuable to industrial and government plan ners. The book is based on a NATO Advanced Study Institute entitled, "Large Scale Applications of Superconductivity and Magnetism" which was held September 5 to 14 in the Hotel des Alpes, Entreves, Valle d'Aosta, Northern Italy. This Study Institute represented a departure from other NA TO Advanced Study Institutes in that it was very strongly directed toward engineering applications rather than purely scientifically oriented interests. The planning of this Institute developed over several years and would not have been possible without continued interest by several key NATO Scientific Mfairs Division scientists. It started when one of us (S. F. ) met with Dr. H.
©2019 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google|Location: United StatesLanguage: English (United States)
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.