What Makes Airplanes Fly?: History, Science, and Applications of Aerodynamics, Edition 2

Springer Science & Business Media
Free sample

How can an airplane weighing many tons stay aloft for many hours, flying so smoothly that the passengers may feel less like they are moving than they would in a car? The answer, of course, lies in the wings and the air they are moving through, and the study of the flow of air around airplane wings is part of the science of aerodynamics. This book is about aerodynamics in the broadest sense. In addition to airplanes, it discusses the aerodynamics of cars and birds, and the motion of diverse object thorugh air and water. The fundamental notions of mechanics and fluid dynamics -- that is, the basic physics underlying aerodynamics -- are clearly explained. The underlying science is discussed rigorously, but only elementary mathematics is used, and only occasionally. To put the science into its human context, the author describes (with many illustrations) the history of human attempts to fly and discusses the social impact of commercial aviation as well as the outlook for future developments. This book is addressed primarily to readers whose background is not in physics or engineering. It will deepen their knowledge of these fields and add to their appreciation of some exciting recent developements in technology. This new edition has been brought up to date throughout; solutions to selected exercises have been added, as well as new problems and other study aids.
Read more
Collapse
Loading...

Additional Information

Publisher
Springer Science & Business Media
Read more
Collapse
Published on
Dec 6, 2012
Read more
Collapse
Pages
260
Read more
Collapse
ISBN
9781461222545
Read more
Collapse
Read more
Collapse
Best For
Read more
Collapse
Language
English
Read more
Collapse
Genres
Science / Mechanics / Fluids
Science / Mechanics / General
Technology & Engineering / Manufacturing
Technology & Engineering / Mechanical
Read more
Collapse
Content Protection
This content is DRM protected.
Read more
Collapse

Reading information

Smartphones and Tablets

Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.

Laptops and Computers

You can read books purchased on Google Play using your computer's web browser.

eReaders and other devices

To read on e-ink devices like the Sony eReader or Barnes & Noble Nook, you'll need to download a file and transfer it to your device. Please follow the detailed Help center instructions to transfer the files to supported eReaders.
The physical properties of fluids are perhaps among the most extensively investigated physical constants of any single group of materials. This is particularly true of the thermodynamic prop erties of pure substances since the condition of thermodynamic equilibrium provides the simplest considerations for experimental measurement as well as theoretical treatment. In the case of non equilibrium transport properties, the situation is significantly complicated by the necessity of measurement of gradients in the experiment and the mathematical difficulties in handling non equilibrium distribution functions in theoretical treatments. Hence, our knowledge of the trans port properties of gases and liquids is perhaps one order of magnitude lower than for equilibrium thermodynamic properties. This situation is very much apparent when examining the available nu merical data on the viscosity of fluids particularly at high pressures. In this work, the authors have performed an outstanding contribution to the engineering literature by their critical evaluation of the pressure dependence of the available data on the viscosity of selected substances. The recommended values reported in the tables and figures also incorporate the saturated liquid and gas states as well as the data of the dilute gas in an attempt to integrate the present work with the recently published work by CINDAS/Purdue University on the viscosity of fluids at low pressures [166]. A deliberate effort was made to treat as many of the substances in the CINDAS volume as possible for which adequate high pressure data exist.
The European Drag Reduction Meeting has been held on 15th and 16th November 1990 in London. This was the fifth of the annual European meetings on drag reduction in engineering flows. The main objective of this meeting was to discuss up-to-date results of drag reduction research carried out in Europe. The organiser has adopted the philosophy of discussing the yesterday's results rather than the last year's results. No written material has therefore been requested for the meeting. It was only after the meeting the submission of papers was requested to the participants, from which 16 papers were selected for this proceedings volume. The meeting has attracted a record number of participants with a total of 52 researchers from seven European countries, U. K. , France, Germany, the Netherlands, Italy, Switzerland and U. S. S. R. as well as from Japan, Canada and Australia. The subjects covered in this proceedings volume include riblets, LEBUs (Large Eddy Break-Up device), surface roughness, compliant surfaces and polymer additives. Riblets seem to be one of the most extensively studied devices in the past years. Reflecting this situation in the European community, there are six papers on riblets covering their practical applications to aircraft and to a model ship, near-wall coherent structure of the boundary layer and effects of flow three-dimensionality. Possibility of heat-transfer enhancement with riblets and potential use in the laminar flow are also investigated. An analytical model is developed for the boundary-layer with a LEBU device.
©2019 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google|Location: United StatesLanguage: English (United States)
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.