Discriminants, Resultants, and Multidimensional Determinants

Springer Science & Business Media
Free sample

"This book revives and vastly expands the classical theory of resultants and discriminants. Most of the main new results of the book have been published earlier in more than a dozen joint papers of the authors. The book nicely complements these original papers with many examples illustrating both old and new results of the theory."—Mathematical Reviews

"Collecting and extending the fundamental and highly original results of the authors, it presents a unique blend of classical mathematics and very recent developments in algebraic geometry, homological algebra, and combinatorial theory." —Zentralblatt Math

"This book is highly recommended if you want to get into the thick of contemporary algebra, or if you wish to find some interesting problem to work on, whose solution will benefit mankind." —Gian-Carlo Rota, Advanced Book Reviews

"...the book is almost perfectly written, and thus I warmly recommend it not only to scholars but especially to students. The latter do need a text with broader views, which shows that mathematics is not just a sequence of apparently unrelated expositions of new theories, ... but instead a very huge and intricate building whose edification may sometimes experience difficulties ... but eventually progresses steadily." —Bulletin of the American Mathematical Society

Read more
Collapse
Loading...

Additional Information

Publisher
Springer Science & Business Media
Read more
Collapse
Published on
May 21, 2009
Read more
Collapse
Pages
523
Read more
Collapse
ISBN
9780817647711
Read more
Collapse
Read more
Collapse
Read more
Collapse
Language
English
Read more
Collapse
Genres
Mathematics / Algebra / Abstract
Mathematics / Algebra / General
Mathematics / Algebra / Linear
Mathematics / Geometry / Algebraic
Read more
Collapse
Content Protection
This content is DRM protected.
Read more
Collapse

Reading information

Smartphones and Tablets

Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.

Laptops and Computers

You can read books purchased on Google Play using your computer's web browser.

eReaders and other devices

To read on e-ink devices like the Sony eReader or Barnes & Noble Nook, you'll need to download a file and transfer it to your device. Please follow the detailed Help center instructions to transfer the files to supported eReaders.
This book is built upon a basic second-year masters course given in 1991– 1992, 1992–1993 and 1993–1994 at the Universit ́ e Paris-Sud (Orsay). The course consisted of about 50 hours of classroom time, of which three-quarters were lectures and one-quarter examples classes. It was aimed at students who had no previous experience with algebraic geometry. Of course, in the time available, it was impossible to cover more than a small part of this ?eld. I chose to focus on projective algebraic geometry over an algebraically closed base ?eld, using algebraic methods only. The basic principles of this course were as follows: 1) Start with easily formulated problems with non-trivial solutions (such as B ́ ezout’s theorem on intersections of plane curves and the problem of rationalcurves).In1993–1994,thechapteronrationalcurveswasreplaced by the chapter on space curves. 2) Use these problems to introduce the fundamental tools of algebraic ge- etry: dimension, singularities, sheaves, varieties and cohomology. I chose not to explain the scheme-theoretic method other than for ?nite schemes (which are needed to be able to talk about intersection multiplicities). A short summary is given in an appendix, in which special importance is given to the presence of nilpotent elements. 3) Use as little commutative algebra as possible by quoting without proof (or proving only in special cases) a certain number of theorems whose proof is not necessary in practise. The main theorems used are collected in a summary of results from algebra with references. Some of them are suggested as exercises or problems.
This text covers topics in algebraic geometry and commutative algebra with a strong perspective toward practical and computational aspects. The first four chapters form the core of the book. A comprehensive chart in the Preface illustrates a variety of ways to proceed with the material once these chapters are covered. In addition to the fundamentals of algebraic geometry—the elimination theorem, the extension theorem, the closure theorem and the Nullstellensatz—this new edition incorporates several substantial changes, all of which are listed in the Preface. The largest revision incorporates a new Chapter (ten), which presents some of the essentials of progress made over the last decades in computing Gröbner bases. The book also includes current computer algebra material in Appendix C and updated independent projects (Appendix D).

The book may serve as a first or second course in undergraduate abstract algebra and with some supplementation perhaps, for beginning graduate level courses in algebraic geometry or computational algebra. Prerequisites for the reader include linear algebra and a proof-oriented course. It is assumed that the reader has access to a computer algebra system. Appendix C describes features of MapleTM, Mathematica® and Sage, as well as other systems that are most relevant to the text. Pseudocode is used in the text; Appendix B carefully describes the pseudocode used.

From the reviews of previous editions:

“...The book gives an introduction to Buchberger’s algorithm with applications to syzygies, Hilbert polynomials, primary decompositions. There is an introduction to classical algebraic geometry with applications to the ideal membership problem, solving polynomial equations and elimination theory. ...The book is well-written. ...The reviewer is sure that it will be an excellent guide to introduce further undergraduates in the algorithmic aspect of commutative algebra and algebraic geometry.”

—Peter Schenzel, zbMATH, 2007

“I consider the book to be wonderful. ... The exposition is very clear, there are many helpful pictures and there are a great many instructive exercises, some quite challenging ... offers the heart and soul of modern commutative and algebraic geometry.”

—The American Mathematical Monthly

©2019 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google|Location: United StatesLanguage: English (United States)
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.