Mathematics for the Life Sciences

Princeton University Press
3
Free sample

The life sciences deal with a vast array of problems at different spatial, temporal, and organizational scales. The mathematics necessary to describe, model, and analyze these problems is similarly diverse, incorporating quantitative techniques that are rarely taught in standard undergraduate courses. This textbook provides an accessible introduction to these critical mathematical concepts, linking them to biological observation and theory while also presenting the computational tools needed to address problems not readily investigated using mathematics alone.

Proven in the classroom and requiring only a background in high school math, Mathematics for the Life Sciences doesn't just focus on calculus as do most other textbooks on the subject. It covers deterministic methods and those that incorporate uncertainty, problems in discrete and continuous time, probability, graphing and data analysis, matrix modeling, difference equations, differential equations, and much more. The book uses MATLAB throughout, explaining how to use it, write code, and connect models to data in examples chosen from across the life sciences.

  • Provides undergraduate life science students with a succinct overview of major mathematical concepts that are essential for modern biology
  • Covers all the major quantitative concepts that national reports have identified as the ideal components of an entry-level course for life science students
  • Provides good background for the MCAT, which now includes data-based and statistical reasoning
  • Explicitly links data and math modeling
  • Includes end-of-chapter homework problems, end-of-unit student projects, and select answers to homework problems
  • Uses MATLAB throughout, and MATLAB m-files with an R supplement are available online
  • Prepares students to read with comprehension the growing quantitative literature across the life sciences
  • A solutions manual for professors and an illustration package is available

Read more

About the author

Erin N. Bodine is assistant professor of mathematics at Rhodes College. Suzanne Lenhart is Chancellor's Professor of Mathematics at the University of Tennessee. Louis J. Gross is Distinguished Professor of Ecology and Evolutionary Biology and Mathematics at the University of Tennessee.
Read more
4.0
3 total
Loading...

Additional Information

Publisher
Princeton University Press
Read more
Published on
Aug 17, 2014
Read more
Pages
640
Read more
ISBN
9781400852772
Read more
Language
English
Read more
Genres
Mathematics / Applied
Medical / General
Science / Biotechnology
Science / Life Sciences / Biology
Read more
Content Protection
This content is DRM protected.
Read more
Read Aloud
Available on Android devices
Read more

Reading information

Smartphones and Tablets

Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.

Laptops and Computers

You can read books purchased on Google Play using your computer's web browser.

eReaders and other devices

To read on e-ink devices like the Sony eReader or Barnes & Noble Nook, you'll need to download a file and transfer it to your device. Please follow the detailed Help center instructions to transfer the files to supported eReaders.
Dynamic Models in Biology offers an introduction to modern mathematical biology. This book provides a short introduction to modern mathematical methods in modeling dynamical phenomena and treats the broad topics of population dynamics, epidemiology, evolution, immunology, morphogenesis, and pattern formation.

Primarily employing differential equations, the author presents accessible descriptions of difficult mathematical models. Recent mathematical results are included, but the author's presentation gives intuitive meaning to all the main formulae. Besides mathematicians who want to get acquainted with this relatively new field of applications, this book is useful for physicians, biologists, agricultural engineers, and environmentalists.

Key Topics Include:

Chaotic dynamics of populationsThe spread of sexually transmitted diseasesProblems of the origin of lifeModels of immunologyFormation of animal hide patternsThe intuitive meaning of mathematical formulae explained with many figuresApplying new mathematical results in modeling biological phenomena

Miklos Farkas is a professor at Budapest University of Technology where he has researched and instructed mathematics for over thirty years. He has taught at universities in the former Soviet Union, Canada, Australia, Venezuela, Nigeria, India, and Columbia. Prof. Farkas received the 1999 Bolyai Award of the Hungarian Academy of Science and the 2001 Albert Szentgyorgyi Award of the Hungarian Ministry of Education.

A 'down-to-earth' introduction to the growing field of modern mathematical biologyAlso includes appendices which provide background material that goes beyond advanced calculus and linear algebra
It has been over a decade since the release of the now classic original edition of Murray's Mathematical Biology. Since then mathematical biology has grown at an astonishing rate and is well established as a distinct discipline. Mathematical modeling is now being applied in every major discipline in the biomedical sciences. Though the field has become increasingly large and specialized, this book remains important as a text that introduces some of the exciting problems that arise in biology and gives some indication of the wide spectrum of questions that modeling can address. Due to the tremendous development in the field this book is being published in two volumes. This first volume is an introduction to the field, the mathematics mainly involves ordinary differential equations that are suitable for undergraduate and graduate courses at different levels. For this new edition Murray is covering certain items in depth, giving new applications such as modeling marital interactions and temperature dependence sex determination.

SIAM, 2004: "Murray's Mathematical Biology is a classic that belongs on the shelf of any serious student or researcher in the field. Together the two volumes contain well over 1000 references, a rich source of material, together with an excellent index to help readers quickly find key words. ... I recommend the new and expanded third edition to any serious young student interested in mathematical biology who already has a solid basis in applied mathematics."

©2018 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google|Location: United StatesLanguage: English (United States)
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.