Future Spacecraft Propulsion Systems: Enabling Technologies for Space Exploration, Edition 2

Springer Science & Business Media
7
Free sample

In this second edition of Future Spacecraft Propulsion Systems, the authors demonstrate the need to break free from the old established concepts of expendable rockets, using chemical propulsion, and to develop new breeds of launch vehicle capable of both launching payloads into orbit at a dramatically reduced cost and for sustained operations in low-Earth orbit. The next steps to establishing a permanent ‘presence’ in the Solar System beyond Earth are the commercialisation of sustained operations on the Moon and the development of advanced nuclear or high-energy space propulsion systems for Solar System exploration out to the boundary of interstellar space.

In the future, high-energy particle research facilities may one day yield a very high-energy propulsion system that will take us to the nearby stars, or even beyond. Space is not quiet: it is a continuous series of nuclear explosions that provide the material for new star systems to form and provide the challenge to explore. This book provides an assessment of the industrial capability required to construct and operate the necessary spacecraft. Time and distance communication and control limitations impose robotic constraints. Space environments restrict human sustained presence and put high demands on electronic, control and materials systems.

This comprehensive and authoritative book puts spacecraft propulsion systems in perspective, from earth orbit launchers to astronomical/space exploration vehicles. It includes new material on fusion propulsion, new figures and updates and expands the information given in the first edition.

Read more
Collapse
3.1
7 total
Loading...

Additional Information

Publisher
Springer Science & Business Media
Read more
Collapse
Published on
Mar 20, 2009
Read more
Collapse
Pages
560
Read more
Collapse
ISBN
9783540888147
Read more
Collapse
Read more
Collapse
Read more
Collapse
Language
English
Read more
Collapse
Genres
Science / Physics / Astrophysics
Technology & Engineering / Aeronautics & Astronautics
Read more
Collapse
Content Protection
This content is DRM protected.
Read more
Collapse

Reading information

Smartphones and Tablets

Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.

Laptops and Computers

You can read books purchased on Google Play using your computer's web browser.

eReaders and other devices

To read on e-ink devices like the Sony eReader or Barnes & Noble Nook, you'll need to download a file and transfer it to your device. Please follow the detailed Help center instructions to transfer the files to supported eReaders.
The technology of the next few decades could possibly allow us to explore with robotic probes the closest stars outside our Solar System, and maybe even observe some of the recently discovered planets circling these stars. This book looks at the reasons for exploring our stellar neighbors and at the technologies we are developing to build space probes that can traverse the enormous distances between the stars.

In order to reach the nearest stars, we must first develop a propulsion technology that would take our robotic probes there in a reasonable time. Such propulsion technology has radically different requirements from conventional chemical rockets, because of the enormous distances that must be crossed. Surprisingly, many propulsion schemes for interstellar travel have been suggested and await only practical engineering solutions and the political will to make them a reality. This is a result of the tremendous advances in astrophysics that have been made in recent decades and the perseverance and imagination of tenacious theoretical physicists. This book explores these different propulsion schemes – all based on current physics – and the challenges they present to physicists, engineers, and space exploration entrepreneurs.

This book will be helpful to anyone who really wants to understand the principles behind and likely future course of interstellar travel and who wants to recognizes the distinctions between pure fantasy (such as Star Trek’s ‘warp drive’) and methods that are grounded in real physics and offer practical technological solutions for exploring the stars in the decades to come.

The 3rd edition of this practical, hands-on book discusses the range of launch vehicles in use today throughout the world, and includes the very latest details of some of the advanced propulsion systems currently being developed. The author covers the fundamentals of the subject, from the basic principles of rocket propulsion and vehicle dynamics through the theory and practice of liquid and solid propellant motors, to new and future developments. The didactic value of the early chapters on the basics of rocket propulsion, by re-working the derivations and updating the examples will be enhanced.

The 3rd edition will stick to the same principle of providing a serious exposition of the principles and practice of rocket propulsion, but from the point of view of the user and enquirer who is not an engineering specialist. Most chapters will remain substantially the same as the second edition; they will be updated where necessary and errata corrected. In particular the new chapters added for the second edition, on Electric and Nuclear propulsion will remain substantially the same.

In addition to general revision, updating and the correction of errata on all chapters, this updated edition will detail a number of new developments in the field Chapter 3 on Liquid propellant rocket engines will have new sections on air breathing engines and on new engines and propellants for the human exploration program. Chapter 8 will now de-emphasize the SSTO concepts, not longer seen as promising, and include new sections on variable thrust engines, again for human exploration. Other new developments following the announcement and subsequent development of NASA’s new man-rated launcher, the ARES, and its Constellation vehicle set. Also covered will be sub-orbital space tourist vehicles and the new rocket engines, which have been developed for them. A new chapter on man-rated launchers and their important characteristics will detail this. New interest in Lunar exploration and the need to supply Lunar bases exposes the requirement for high efficiency engines for Lunar transportation and storage of high energy propellants like liquid oxygen and liquid hydrogen. New engines designed for in-space transportation and Lunar landing and departure will be added to the relevant chapters.

In “Human Missions to Mars” Donald Rapp looks at human missions to Mars from an engineering perspective. He begins by describing the pros and cons of robotic exploration versus human exploration and then examines the ideas for sending humans to Mars from the point of view of both the enthusiast and the skeptic. Chapter 2 describes how space missions are planned and how they may be achieved as a sequence of separate steps. Chapter 3 deals with the complex issues relating to the outward journey to Mars and the return leg. The author deals with propulsion systems and with the analysis of the various trajectories which may be utilized for such a mission. He divides mission into a number of stages: Earth’s surface to low-Earth orbit (LEO); departing from LEO; Mars orbit insertion and landing; ascent from Mars; trans-Earth injection from Mars orbit and Earth orbit insertion and landing. Chapter 4 discusses a wide range of elements critical to a human Mars mission, including life support consumables, radiation effects and shielding, microgravity effects, abort options and mission safety, possible habitats on the Martian surface and aero assisted orbit insertion and entry decent and landing.

For any human mission to the Red Planet the possible utilization of any resources indigenous to Mars would be of great value and such possibilities are discussed in Chapter 5. The use of indigenous resources on the Moon is described as a precursor to the availability of similar resources on Mars and issues such as fuelling Mars-bound craft from lunar resources, the use of lunar ferries, staging, assembly and refueling in near-Earth space are all discussed. The important applications arising from the transportation of hydrogen to Mars are also described. Chapter 6 deals with a range of previous Mars mission studies and the technologies they employed. Chapter 7 looks as how NASA is planning for its return to the Moon, and the use of the Moon as a stepping stone to Mars. Chapter 8 presents the author’s detailed analysis of why, in his opinion, the current NASA approach will fail to send humans to Mars before 2080. The book concludes with three appendices describing the use of solar energy on the Moon and on Mars and the value of indigenous water on Mars.

©2019 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google|Location: United StatesLanguage: English (United States)
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.