Fundamentals of Creep in Metals and Alloys

Free sample

* Numerous line drawings with consistent format and units allow easy comparison of the behavior of a very wide range of materials
* Transmission electron micrographs provide a direct insight in the basic microstructure of metals deforming at high temperatures
* Extensive literature review of over 1000 references provide an excellent reference document, and a very balanced discussion

Understanding the strength of materials at a range of temperatures is critically important to a huge number of researchers and practitioners from a wide range of fields and industry sectors including metallurgists, industrial designers, aerospace R&D personnel, and structural engineers.

The most up-to date and comprehensive book in the field, Fundamentals of Creep in Metals and Alloys discusses the fundamentals of time-dependent plasticity or creep plasticity in metals, alloys and metallic compounds. This is the first book of its kind that provides broad coverage of a range of materials not just a sub-group such as metallic compounds, superalloys or crystals. As such it presents the most balanced view of creep for all materials scientists.

The theory of all of these phenomena are extensively reviewed and analysed in view of an extensive bibliography that includes the most recent publications in the field. All sections of the book have undergone extensive peer review and therefore the reader can be sure they have access to the most up-to-date research, fully interrogated, from the world’s leading investigators.

· Numerous line drawings with consistent format and units allow easy comparison of the behavior of a very wide range of materials
· Transmission electron micrographs provide a direct insight in the basic microstructure of metals deforming at high temperatures
· Extensive literature review of over 1000 references provide an excellent reference document, and a very balanced discussion

Read more
Collapse

About the author

Dr. Kassner is a professor in the department of Aerospace and Mechanical Engineering at the University of Southern California in Los Angeles. He holds M.S.and Ph.D. degrees in Materials Science and Engineering from Stanford University, has published two books and more than 200 articles and book chapters in the areas of metal plasticity theory, creep, fracture, phase diagrams, fatigue, and semi-solid forming, and currently serves on the editorial board of Elsevier’s International Journal of Plasticity.

Read more
Collapse
4.5
2 total
Loading...

Additional Information

Publisher
Elsevier
Read more
Collapse
Published on
Apr 6, 2004
Read more
Collapse
Pages
288
Read more
Collapse
ISBN
9780080532141
Read more
Collapse
Read more
Collapse
Best For
Read more
Collapse
Language
English
Read more
Collapse
Genres
Technology & Engineering / Materials Science / General
Technology & Engineering / Metallurgy
Technology & Engineering / Tribology
Read more
Collapse
Content Protection
This content is DRM protected.
Read more
Collapse
Eligible for Family Library

Reading information

Smartphones and Tablets

Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.

Laptops and Computers

You can read books purchased on Google Play using your computer's web browser.

eReaders and other devices

To read on e-ink devices like the Sony eReader or Barnes & Noble Nook, you'll need to download a file and transfer it to your device. Please follow the detailed Help center instructions to transfer the files to supported eReaders.
Metallurgy and Design of Alloys with Hierarchical Microstructures covers the fundamentals of processing-microstructure-property relationships and how multiple properties are balanced and optimized in materials with hierarchical microstructures widely used in critical applications. The discussion is based principally on metallic materials used in aircraft structures; however, because they have sufficiently diverse microstructures, the underlying principles can easily be extended to other materials systems. With the increasing microstructural complexity of structural materials, it is important for students, academic researchers and practicing engineers to possess the knowledge of how materials are optimized and how they will behave in service.

The book integrates aspects of computational materials science, physical metallurgy, alloy design, process design, and structure-properties relationships, in a manner not done before. It fills a knowledge gap in the interrelationships of multiple microstructural and deformation mechanisms by applying the concepts and tools of designing microstructures for achieving combinations of engineering properties—such as strength, corrosion resistance, durability and damage tolerance in multi-component materials—used for critical structural applications.

Discusses the science behind the properties and performance of advanced metallic materialsProvides for the efficient design of materials and processes to satisfy targeted performance in materials and structuresEnables the selection and development of new alloys for specific applications based upon evaluation of their microstructure as illustrated in this work
A comprehensive treatise on the hot working of aluminum and its alloys, Hot Deformation and Processing of Aluminum Alloys details the possible microstructural developments that can occur with hot deformation of various alloys, as well as the kind of mechanical properties that can be anticipated. The authors take great care to explain and differentiate hot working in the context of other elevated temperature phenomena, such as creep, superplasticity, cold working, and annealing. They also pay particular attention to the fundamental mechanisms of aluminum plasticity at hot working temperatures.

Using extensive analysis derived from polarized light optical microscopy (POM), transmission electron microscopy (TEM), x-ray diffraction (XRD) scanning electron-microscopy with electron backscatter imaging (SEM-EBSD), and orientation imaging microscopy (OIM), the authors examine those microstructures that evolve in torsion, compression, extrusion, and rolling. Further microstructural analysis leads to detailed explanations of dynamic recovery (DRV), static recovery (SRV), discontinuous dynamic recrystallization (dDRX), discontinuous static recrystallization (dSRX), grain defining dynamic recovery (gDRV) (formerly geometric dynamic recrystallization, or gDRX), and continuous dynamic recrystallization involving both a single phase (cDRX/1-phase) and multiple phases (cDRX/2-phase).

A companion to other works that focus on modeling, manufacturing involving plastic and superplastic deformation, and control of texture and phase transformations, this book provides thorough explanations of microstructural development to lay the foundation for further study of the mechanisms of thermomechanical processes and their application.

This authoritative account covers the entire spectrum from iron ore to finished steel. It begins by tracing the history of iron and steel production, right from the earlier days to today’s world of oxygen steelmaking, electric steelmaking, secondary steelmaking and continuous casting. The physicochemical fundamental concepts of chemical equilibrium, activity-composition relationships, and structure-properties of molten metals are introduced before going into details of transport phenomena, i.e. kinetics, mixing and mass transfer in ironmaking and steelmaking pro-cesses. Particular emphasis is laid on the understanding of the fundamental principles of the processes and their application to the optimisation of actual processes. Modern developments in blast furnaces, including modelling and process control are discussed along with an introduction to the alternative methods of ironmaking. In the area of steelmaking, BOF plant practice including pre-treatment of hot metal, metallurgical features of oxygen steelmaking processes, and their control form part of the book. It also covers basic open hearth, electric arc furnace and stainless steelmaking, before discussing the area of casting of liquid steel—ingot casting, continuous casting and near net shape casting. The book concludes with a chapter on the status of the ironmaking and steelmaking in India. In line with the application of theoretical principles, several worked-out examples dealing with fundamental principles as applied to actual plant situations are presented. The book is primarily intended for undergraduate and postgraduate students of metallurgical engineering. It would also be immensely useful to researchers in the area of iron and steel.
©2019 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google|Location: United StatesLanguage: English (United States)
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.