An Introduction to Biomedical Optics

Taylor & Francis
Free sample

Many universities now offer a course in biomedical optics, but lack a textbook specifically addressing the topic. Intended to fill this gap, An Introduction to Biomedical Optics is the first comprehensive, introductory text describing both diagnostic and therapeutic optical methods in medicine. It provides the fundamental background needed for grad
Read more

Additional Information

Taylor & Francis
Read more
Published on
Dec 13, 2006
Read more
Read more
Read more
Read more
Best For
Read more
Read more
Medical / Biotechnology
Science / Physics / General
Technology & Engineering / Lasers & Photonics
Read more
Content Protection
This content is DRM protected.
Read more
Eligible for Family Library

Reading information

Smartphones and Tablets

Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.

Laptops and Computers

You can read books purchased on Google Play using your computer's web browser.

eReaders and other devices

To read on e-ink devices like the Sony eReader or Barnes & Noble Nook, you'll need to download a file and transfer it to your device. Please follow the detailed Help center instructions to transfer the files to supported eReaders.
Shaped by Quantum Theory, Technology, and the Genomics Revolution

The integration of photonics, electronics, biomaterials, and nanotechnology holds great promise for the future of medicine. This topic has recently experienced an explosive growth due to the noninvasive or minimally invasive nature and the cost-effectiveness of photonic modalities in medical diagnostics and therapy. The second edition of the Biomedical Photonics Handbook presents fundamental developments as well as important applications of biomedical photonics of interest to scientists, engineers, manufacturers, teachers, students, and clinical providers. The second volume, Biomedical Diagnostics, focuses on biomedical diagnostic technologies and their applications from the bench to the bedside.

Represents the Collective Work of over 150 Scientists, Engineers, and Clinicians

Designed to display the most recent advances in instrumentation and methods, as well as clinical applications in important areas of biomedical photonics to a broad audience, this three-volume handbook provides an inclusive forum that serves as an authoritative reference source for a broad audience involved in the research, teaching, learning, and practice of medical technologies.

What’s New in This Edition:

A wide variety of photonic biochemical sensing technologies have already been developed for clinical monitoring of physiological parameters, such as blood pressure, blood chemistry, pH, temperature, and the presence of pathological organisms or biochemical species of clinical importance. Advanced photonic detection technologies integrating the latest knowledge of genomics, proteomics and metabolomics allow sensing of early disease state biomarkers, thus revolutionizing the medicine of the future. Nanobiotechnology has opened new possibilities for detection of biomarkers of disease, imaging single molecules and in situ diagnostics at the single cell level. In addition to these state-of-the art advancements, the second edition contains new topics and chapters including:

• Fiber Optic Probe Design

• Laser and Optical Radiation Safety

• Photothermal Detection

• Multidimensional Fluorescence Imaging

• Surface Plasmon Resonance Imaging

• Molecular Contrast Optical Coherence Tomography

• Multiscale Photoacoustics

• Polarized Light for Medical Diagnostics

• Quantitative Diffuse Reflectance Imaging

• Interferometric Light Scattering

• Nonlinear Interferometric Vibrational Imaging

• Multimodality Theranostics Nanoplatforms

• Nanoscintillator-Based Therapy

• SERS Molecular Sentinel Nanoprobes

• Plasmonic Coupling Interference Nanoprobes

Comprised of three books: Volume I: Fundamentals, Devices, and Techniques; Volume II: Biomedical Diagnostics; and Volume III: Therapeutics and Advanced Biophotonics, this second edition contains eight sections, and provides introductory material in each chapter. It also includes an overview of the topic, an extensive collection of spectroscopic data, and lists of references for further reading.

Full-field optical coherence microscopy (FF-OCM) is an imaging technique that provides cross-sectional views of the subsurface microstructure of semitransparent objects. The technology is based on low-coherence interference microscopy, which uses an area camera for en face imaging of the full-field illuminated object. FF-OCM benefits from the lateral imaging resolution of optical microscopy along with the capacity of optical axial sectioning at micrometer-scale resolution. The technique can be employed in diverse applications, in particular for non-invasive examination of biological tissues.

This handbook is the first to be entirely devoted to FF-OCM. It is organized into four parts with a total of 21 chapters written by recognized experts and major contributors to the field. After a general introduction to FF-OCM, the fundamental characteristics of the technology are analyzed and discussed theoretically. The main technological developments of FF-OCM for improving the image acquisition speed and for endoscopic imaging are presented in part II. Extensions of FF-OCM for image contrast enhancement or functional imaging are reported in part III. The last part of the book provides an overview of possible applications of FF-OCM in medicine, biology, and materials science.

A comprehensive compilation of self-contained chapters written by leading experts, this handbook is a definitive guide to the theoretical analyses, technological developments, and applications of FF-OCM. Using the rich information the book is replete with, a wide range of readers, from scientists and physicists to engineers as well as clinicians and biomedical researchers, can get a handle on the latest major advances in FF-OCM.

Biomedical optics holds tremendous promise to deliver effective, safe, non- or minimally invasive diagnostics and targeted, customizable therapeutics. Handbook of Biomedical Optics provides an in-depth treatment of the field, including coverage of applications for biomedical research, diagnosis, and therapy. It introduces the theory and fundamentals of each subject, ensuring accessibility to a wide multidisciplinary readership. It also offers a view of the state of the art and discusses advantages and disadvantages of various techniques.

Organized into six sections, this handbook:

Contains introductory material on optics and the optical properties of tissue Describes the various forms of spectroscopy and its applications in medicine and biology, including methods that exploit intrinsic absorption and scattering contrast; dynamic contrast; and fluorescence and Raman contrast mechanisms Provides extensive coverage of tomography from the microscopic (optical coherence tomography) to the macroscopic (diffuse optical tomography) to photoacoustic tomography Discusses cutting-edge translations to biomedical applications in both basic sciences and clinical studies Details molecular imaging and molecular probe development Highlights the use of light in disease and injury treatment

The breadth and depth of multidisciplinary knowledge in biomedical optics has been expanding continuously and exponentially, thus underscoring the lack of a single source to serve as a reference and teaching tool for scientists in related fields. Handbook of Biomedical Optics addresses this need, offering the most complete up-to-date overview of the field for researchers and students alike.

©2020 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google|Location: United StatesLanguage: English (United States)
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.