Adaptive Markets: Financial Evolution at the Speed of Thought

Princeton University Press
2
Free sample

A new, evolutionary explanation of markets and investor behavior

Half of all Americans have money in the stock market, yet economists can't agree on whether investors and markets are rational and efficient, as modern financial theory assumes, or irrational and inefficient, as behavioral economists believe—and as financial bubbles, crashes, and crises suggest. This is one of the biggest debates in economics and the value or futility of investment management and financial regulation hang on the outcome. In this groundbreaking book, Andrew Lo cuts through this debate with a new framework, the Adaptive Markets Hypothesis, in which rationality and irrationality coexist.

Drawing on psychology, evolutionary biology, neuroscience, artificial intelligence, and other fields, Adaptive Markets shows that the theory of market efficiency isn't wrong but merely incomplete. When markets are unstable, investors react instinctively, creating inefficiencies for others to exploit. Lo's new paradigm explains how financial evolution shapes behavior and markets at the speed of thought—a fact revealed by swings between stability and crisis, profit and loss, and innovation and regulation.

A fascinating intellectual journey filled with compelling stories, Adaptive Markets starts with the origins of market efficiency and its failures, turns to the foundations of investor behavior, and concludes with practical implications—including how hedge funds have become the Galápagos Islands of finance, what really happened in the 2008 meltdown, and how we might avoid future crises.

An ambitious new answer to fundamental questions in economics, Adaptive Markets is essential reading for anyone who wants to know how markets really work.

Read more

About the author

Andrew W. Lo is the Charles E. and Susan T. Harris Professor at the MIT Sloan School of Management and director of the MIT Laboratory for Financial Engineering. He is the author of Hedge Funds and the coauthor of A Non-Random Walk Down Wall Street and The Econometrics of Financial Markets (all Princeton). He is also the founder of AlphaSimplex Group, a quantitative investment management company based in Cambridge, Massachusetts.
Read more
4.0
2 total
Loading...

Additional Information

Publisher
Princeton University Press
Read more
Published on
Apr 24, 2017
Read more
Pages
504
Read more
ISBN
9781400887767
Read more
Language
English
Read more
Genres
Business & Economics / Consumer Behavior
Business & Economics / Economics / General
Business & Economics / Economics / Theory
Business & Economics / Finance / General
Business & Economics / Forecasting
Read more
Content Protection
This content is DRM protected.
Read more
Read Aloud
Available on Android devices
Read more
Eligible for Family Library

Reading information

Smartphones and Tablets

Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.

Laptops and Computers

You can read books purchased on Google Play using your computer's web browser.

eReaders and other devices

To read on e-ink devices like the Sony eReader or Barnes & Noble Nook, you'll need to download a file and transfer it to your device. Please follow the detailed Help center instructions to transfer the files to supported eReaders.
"Mesmerizing & fascinating..." —The Seattle Post-Intelligencer

"The Freakonomics of big data." —Stein Kretsinger, founding executive of Advertising.com

Award-winning | Used by over 30 universities | Translated into 9 languages

An introduction for everyone. In this rich, fascinating — surprisingly accessible — introduction, leading expert Eric Siegel reveals how predictive analytics (aka machine learning) works, and how it affects everyone every day. Rather than a “how to” for hands-on techies, the book serves lay readers and experts alike by covering new case studies and the latest state-of-the-art techniques.

Prediction is booming. It reinvents industries and runs the world. Companies, governments, law enforcement, hospitals, and universities are seizing upon the power. These institutions predict whether you're going to click, buy, lie, or die.

Why? For good reason: predicting human behavior combats risk, boosts sales, fortifies healthcare, streamlines manufacturing, conquers spam, optimizes social networks, toughens crime fighting, and wins elections.

How? Prediction is powered by the world's most potent, flourishing unnatural resource: data. Accumulated in large part as the by-product of routine tasks, data is the unsalted, flavorless residue deposited en masse as organizations churn away. Surprise! This heap of refuse is a gold mine. Big data embodies an extraordinary wealth of experience from which to learn.

Predictive analytics (aka machine learning) unleashes the power of data. With this technology, the computer literally learns from data how to predict the future behavior of individuals. Perfect prediction is not possible, but putting odds on the future drives millions of decisions more effectively, determining whom to call, mail, investigate, incarcerate, set up on a date, or medicate.

In this lucid, captivating introduction — now in its Revised and Updated edition — former Columbia University professor and Predictive Analytics World founder Eric Siegel reveals the power and perils of prediction:

What type of mortgage risk Chase Bank predicted before the recession. Predicting which people will drop out of school, cancel a subscription, or get divorced before they even know it themselves. Why early retirement predicts a shorter life expectancy and vegetarians miss fewer flights. Five reasons why organizations predict death — including one health insurance company. How U.S. Bank and Obama for America calculated the way to most strongly persuade each individual. Why the NSA wants all your data: machine learning supercomputers to fight terrorism. How IBM's Watson computer used predictive modeling to answer questions and beat the human champs on TV's Jeopardy! How companies ascertain untold, private truths — how Target figures out you're pregnant and Hewlett-Packard deduces you're about to quit your job. How judges and parole boards rely on crime-predicting computers to decide how long convicts remain in prison. 182 examples from Airbnb, the BBC, Citibank, ConEd, Facebook, Ford, Google, the IRS, LinkedIn, Match.com, MTV, Netflix, PayPal, Pfizer, Spotify, Uber, UPS, Wikipedia, and more.

How does predictive analytics work? This jam-packed book satisfies by demystifying the intriguing science under the hood. For future hands-on practitioners pursuing a career in the field, it sets a strong foundation, delivers the prerequisite knowledge, and whets your appetite for more.

A truly omnipresent science, predictive analytics constantly affects our daily lives. Whether you are a consumer of it — or consumed by it — get a handle on the power of Predictive Analytics.

The 21st century business environment demands more analysis and rigor in marketing decision making. Increasingly, marketing decision making resembles design engineering-putting together concepts, data, analyses, and simulations to learn about the marketplace and to design effective marketing plans. While many view traditional marketing as art and some view it as science, the new marketing increasingly looks like engineering (that is, combining art and science to solve specific problems).

Marketing Engineering is the systematic approach to harness data and knowledge to drive effective marketing decision making and implementation through a technology-enabled and model-supported decision process. (For more information on Excel-based models that support these concepts, visit DecisionPro.biz.)

We have designed this book primarily for the business school student or marketing manager, who, with minimal background and technical training, must understand and employ the basic tools and models associated with Marketing Engineering.

We offer an accessible overview of the most widely used marketing engineering concepts and tools and show how they drive the collection of the right data and information to perform the right analyses to make better marketing plans, better product designs, and better marketing decisions.

What's New In the 2nd Edition

While much has changed in the nearly five years since the first edition of Principles of Marketing Engineering was published, much has remained the same. Hence, we have not changed the basic structure or contents of the book. We have, however

Updated the examples and references. Added new content on customer lifetime value and customer valuation methods. Added several new pricing models. Added new material on "reverse perceptual mapping" to describe some exciting enhancements to our Marketing Engineering for Excel software. Provided some new perspectives on the future of Marketing Engineering. Provided better alignment between the content of the text and both the software and cases available with Marketing Engineering for Excel 2.0.
For over half a century, financial experts have regarded the movements of markets as a random walk--unpredictable meanderings akin to a drunkard's unsteady gait--and this hypothesis has become a cornerstone of modern financial economics and many investment strategies. Here Andrew W. Lo and A. Craig MacKinlay put the Random Walk Hypothesis to the test. In this volume, which elegantly integrates their most important articles, Lo and MacKinlay find that markets are not completely random after all, and that predictable components do exist in recent stock and bond returns. Their book provides a state-of-the-art account of the techniques for detecting predictabilities and evaluating their statistical and economic significance, and offers a tantalizing glimpse into the financial technologies of the future.

The articles track the exciting course of Lo and MacKinlay's research on the predictability of stock prices from their early work on rejecting random walks in short-horizon returns to their analysis of long-term memory in stock market prices. A particular highlight is their now-famous inquiry into the pitfalls of "data-snooping biases" that have arisen from the widespread use of the same historical databases for discovering anomalies and developing seemingly profitable investment strategies. This book invites scholars to reconsider the Random Walk Hypothesis, and, by carefully documenting the presence of predictable components in the stock market, also directs investment professionals toward superior long-term investment returns through disciplined active investment management.

©2018 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.