Mathematics of Quantum Computation

CRC Press
Free sample

Among the most exciting developments in science today is the design and construction of the quantum computer. Its realization will be the result of multidisciplinary efforts, but ultimately, it is mathematics that lies at the heart of theoretical quantum computer science.

Mathematics of Quantum Computation brings together leading computer scientists, mathematicians, and physicists to provide the first interdisciplinary but mathematically focused exploration of the field's foundations and state of the art. Each section of the book addresses an area of major research, and does so with introductory material that brings newcomers quickly up to speed. Chapters that are more advanced include recent developments not yet published in the open literature.

Information technology will inevitably enter into the realm of quantum mechanics, and, more than all the atomic, molecular, optical, and nanotechnology advances, it is the device-independent mathematics that is the foundation of quantum computer and information science. Mathematics of Quantum Computation offers the first up-to-date coverage that has the technical depth and breadth needed by those interested in the challenges being confronted at the frontiers of research.
Read more
Collapse

About the author

Texas A&M University

Read more
Collapse
Loading...

Additional Information

Publisher
CRC Press
Read more
Collapse
Published on
Feb 14, 2002
Read more
Collapse
Pages
448
Read more
Collapse
ISBN
9781420035377
Read more
Collapse
Read more
Collapse
Best For
Read more
Collapse
Language
English
Read more
Collapse
Genres
Computers / General
Computers / Programming / Algorithms
Mathematics / Applied
Mathematics / General
Read more
Collapse
Content Protection
This content is DRM protected.
Read more
Collapse
Eligible for Family Library

Reading information

Smartphones and Tablets

Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.

Laptops and Computers

You can read books purchased on Google Play using your computer's web browser.

eReaders and other devices

To read on e-ink devices like the Sony eReader or Barnes & Noble Nook, you'll need to download a file and transfer it to your device. Please follow the detailed Help center instructions to transfer the files to supported eReaders.
Taking a novel, more appealing approach than current texts, An Integrated Introduction to Computer Graphics and Geometric Modeling focuses on graphics, modeling, and mathematical methods, including ray tracing, polygon shading, radiosity, fractals, freeform curves and surfaces, vector methods, and transformation techniques. The author begins with fractals, rather than the typical line-drawing algorithms found in many standard texts. He also brings the turtle back from obscurity to introduce several major concepts in computer graphics.

Supplying the mathematical foundations, the book covers linear algebra topics, such as vector geometry and algebra, affine and projective spaces, affine maps, projective transformations, matrices, and quaternions. The main graphics areas explored include reflection and refraction, recursive ray tracing, radiosity, illumination models, polygon shading, and hidden surface procedures. The book also discusses geometric modeling, including planes, polygons, spheres, quadrics, algebraic and parametric curves and surfaces, constructive solid geometry, boundary files, octrees, interpolation, approximation, Bezier and B-spline methods, fractal algorithms, and subdivision techniques.

Making the material accessible and relevant for years to come, the text avoids descriptions of current graphics hardware and special programming languages. Instead, it presents graphics algorithms based on well-established physical models of light and cogent mathematical methods.

The latest edition of the essential text and professional reference, with substantial new material on such topics as vEB trees, multithreaded algorithms, dynamic programming, and edge-based flow.

Some books on algorithms are rigorous but incomplete; others cover masses of material but lack rigor. Introduction to Algorithms uniquely combines rigor and comprehensiveness. The book covers a broad range of algorithms in depth, yet makes their design and analysis accessible to all levels of readers. Each chapter is relatively self-contained and can be used as a unit of study. The algorithms are described in English and in a pseudocode designed to be readable by anyone who has done a little programming. The explanations have been kept elementary without sacrificing depth of coverage or mathematical rigor.

The first edition became a widely used text in universities worldwide as well as the standard reference for professionals. The second edition featured new chapters on the role of algorithms, probabilistic analysis and randomized algorithms, and linear programming. The third edition has been revised and updated throughout. It includes two completely new chapters, on van Emde Boas trees and multithreaded algorithms, substantial additions to the chapter on recurrence (now called “Divide-and-Conquer”), and an appendix on matrices. It features improved treatment of dynamic programming and greedy algorithms and a new notion of edge-based flow in the material on flow networks. Many exercises and problems have been added for this edition. The international paperback edition is no longer available; the hardcover is available worldwide.

©2019 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google|Location: United StatesLanguage: English (United States)
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.