Lectures on Counterexamples in Several Complex Variables

American Mathematical Soc.
Free sample
Loading...

Additional Information

Publisher
American Mathematical Soc.
Read more
Pages
247
Read more
ISBN
9780821869499
Read more
Read more
Best For
Read more
Language
English
Read more
Genres
Mathematics / Functional Analysis
Read more
Content Protection
This content is DRM protected.
Read more

Reading information

Smartphones and Tablets

Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.

Laptops and Computers

You can read books purchased on Google Play using your computer's web browser.

eReaders and other devices

To read on e-ink devices like the Sony eReader or Barnes & Noble Nook, you'll need to download a file and transfer it to your device. Please follow the detailed Help center instructions to transfer the files to supported eReaders.
The central theme of this book is the interaction between the curvature of a complete Riemannian manifold and its topology and global geometry. The first five chapters are preparatory in nature. They begin with a very concise introduction to Riemannian geometry, followed by an exposition of Toponogov's theorem--the first such treatment in a book in English. Next comes a detailed presentation of homogeneous spaces in which the main goal is to find formulas for their curvature. A quick chapter of Morse theory is followed by one on the injectivity radius. Chapters 6-9 deal with many of the most relevant contributions to the subject in the years 1959 to 1974. These include the pinching (or sphere) theorem, Berger's theorem for symmetric spaces, the differentiable sphere theorem, the structure of complete manifolds of non-negative curvature, and finally, results about the structure of complete manifolds of non-positive curvature. Emphasis is given to the phenomenon of rigidity, namely, the fact that although the conclusions which hold under the assumption of some strict inequality on curvature can fail when the strict inequality on curvature can fail when the strict inequality is relaxed to a weak one, the failure can happen only in a restricted way, which can usually be classified up to isometry. Much of the material, particularly the last four chapters, was essentially state-of-the-art when the book first appeared in 1975. Since then, the subject has exploded, but the material covered in the book still represents an essential prerequisite for anyone who wants to work in the field.
A caution to mathematics professors: Complex Variables does not follow conventional outlines of course material. One reviewer noting its originality wrote: "A standard text is often preferred [to a superior text like this] because the professor knows the order of topics and the problems, and doesn't really have to pay attention to the text. He can go to class without preparation." Not so here — Dr. Flanigan treats this most important field of contemporary mathematics in a most unusual way. While all the material for an advanced undergraduate or first-year graduate course is covered, discussion of complex algebra is delayed for 100 pages, until harmonic functions have been analyzed from a real variable viewpoint. Students who have forgotten or never dealt with this material will find it useful for the subsequent functions. In addition, analytic functions are defined in a way which simplifies the subsequent theory. Contents include: Calculus in the Plane, Harmonic Functions in the Plane, Complex Numbers and Complex Functions, Integrals of Analytic Functions, Analytic Functions and Power Series, Singular Points and Laurent Series, The Residue Theorem and the Argument Principle, and Analytic Functions as Conformal Mappings.
Those familiar with mathematics texts will note the fine illustrations throughout and large number of problems offered at the chapter ends. An answer section is provided. Students weary of plodding mathematical prose will find Professor Flanigan's style as refreshing and stimulating as his approach.
The theory of analytic functions of several complex variables enjoyed a period of remarkable development in the middle part of the twentieth century. After initial successes by Poincare and others in the late 19th and early 20th centuries, the theory encountered obstacles that prevented it from growing quickly into an analogue of the theory for functions of one complex variable. Beginning in the 1930s, initially through the work of Oka, then H. Cartan, and continuing with the work of Grauert, Remmert, and others, new tools were introduced into the theory of several complex variables that resolved many of the open problems and fundamentally changed the landscape of the subject. These tools included a central role for sheaf theory and increased uses of topology and algebra. The book by Gunning and Rossi was the first of the modern era of the theory of several complex variables, which is distinguished by the use of these methods. The intention of Gunning and Rossi's book is to provide an extensive introduction to the Oka-Cartan theory and some of its applications, and to the general theory of analytic spaces. Fundamental concepts and techniques are discussed as early as possible. The first chapter covers material suitable for a one-semester graduate course, presenting many of the central problems and techniques, often in special cases. The later chapters give more detailed expositions of sheaf theory for analytic functions and the theory of complex analytic spaces. Since its original publication, this book has become a classic resource for the modern approach to functions of several complex variables and the theory of analytic spaces.
©2018 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.