Electrodynamics of Continuous Media

COURSE OF THEORETICAL PHYSICS

Free sample

Covers the theory of electromagnetic fields in matter, and the theory of the macroscopic electric and magnetic properties of matter. There is a considerable amount of new material particularly on the theory of the magnetic properties of matter and the theory of optical phenomena with new chapters on spatial dispersion and non-linear optics. The chapters on ferromagnetism and antiferromagnetism and on magnetohydrodynamics have been substantially enlarged and eight other chapters have additional sections.
Read more
Collapse

About the author

Lev Davidovich Landau was born on January 22, 1908 in Baku, U.S.S.R (now Azerbaijan). A brilliant student, he had finished secondary school by the age of 13. He enrolled in the University of Baku a year later, in 1922, and later transferred to the University of Leningrad, from which he graduated with a degree in physics. Landau did graduate work in physics at Leningrad's Physiotechnical Institute, at Cambridge University in England, and at the Institute of Theoretical Physics in Denmark, where he met physicist Neils Bohr, whose work he greatly admired. Landau worked in the Soviet Union's nuclear weapons program during World War II, and then began a teaching career. Considered to be the founder of a whole school of Soviet theoretical physicists, Landau was honored with numerous awards, including the Lenin Prize, the Max Planck Medal, the Fritz London Prize, and, most notably, the 1962 Nobel Prize for Physics, which honored his pioneering work in the field of low-temperature physics and condensed matter, particularly liquid helium. Unfortunately, Landau's wife and son had to accept the Nobel Prize for him; Landau had been seriously injured in a car crash several months earlier and never completely recovered. He was unable to work again, and spent the remainder of his years, until his death in 1968, battling health problems resulting from the accident. Landau's most notable written work is his Course of Theoretical Physics, an eight-volume set of texts covering the complete range of theoretical physics. Like several other of Landau's books, it was written with Evgeny Lifshitz, a favorite student, because Landau himself strongly disliked writing. Some other works include What is Relativity?, Theory of Elasticity, and Physics for Everyone.

Read more
Collapse
Loading...

Additional Information

Publisher
Elsevier
Read more
Collapse
Published on
Oct 22, 2013
Read more
Collapse
Pages
1341
Read more
Collapse
ISBN
9781483293752
Read more
Collapse
Read more
Collapse
Read more
Collapse
Language
English
Read more
Collapse
Genres
Science / Physics / Electricity
Science / Physics / Electromagnetism
Read more
Collapse
Content Protection
This content is DRM protected.
Read more
Collapse
Read Aloud
Available on Android devices
Read more
Collapse
Eligible for Family Library

Reading information

Smartphones and Tablets

Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.

Laptops and Computers

You can read books purchased on Google Play using your computer's web browser.

eReaders and other devices

To read on e-ink devices like the Sony eReader or Barnes & Noble Nook, you'll need to download a file and transfer it to your device. Please follow the detailed Help center instructions to transfer the files to supported eReaders.
This book [earlier titled as Electromagnetism: Theory and Applications which is bifurcated into two volumes: Electromagnetism: Theory and Electromagnetism: Applications (Magnetic Diffusion and Electromagnetic Waves) has been updated to cover some additional aspects of theory and nearly all modern applications. The semi-historical approach is unchanged, but further historical comments have been introduced at various places in the book to give a better insight into the development of the subject as well as to make the study more interesting and palatable to the students. Key Features • Physical explanations of different types of currents • Concepts of complex permittivity and complex permeability; and anisotropic behaviour of constitute parameters in different media and different conditions • Vector co-ordinate system transformation equations • Halbach magnets and the theory of one-sided flux • Discussion on physical aspects of demagnetization curve of B-H loop for ferromagnetic materials • Extrapolation of Frohlich-Kennely equation used for the design and analysis of permanent magnet applications • Physical aspects of Faraday’s law of electromagnetic induction (i.e., Fourth Maxwell’s field equation) through the approach of special relativity • Extrapolation and elaboration of the concept of electromechanical energy conversion to both magnetic as well as electric field systems Appendices contain in-depth analysis of self-inductance and non-conservative fields (Appendix 6), proof regarding the boundary conditions (Appendix 8), theory of bicylindrical co-ordinate system to provide the physical basis of the circuit approach to the cylindrical transmission line systems (Appendix 10), and properties of useful functions like Bessel and Legendre functions (Appendix 9). The book is designed to serve as a core text for students of electrical engineering. Besides, it will be useful to postgraduate physics students as well as research engineers and design and development engineers in industries.
©2019 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google|Location: United StatesLanguage: English (United States)
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.