Physics in Biology and Medicine: Edition 3

Academic Press
4
Free sample

Physics in Biology and Medicine, Third Edition covers topics in physics as they apply to the life sciences, specifically medicine, physiology, nursing, and other applied health fields.

This concise introductory paperback surveys and relates basic physics to living systems. It discusses biological systems that can be analyzed quantitatively, and how advances in the life sciences have been aided by the knowledge of physical or engineering analysis techniques.

This text is designed for premed students, doctors, nurses, physiologists, or other applied health workers, and other individuals who wish to understand the nature of the mechanics of our bodies.

- Provides practical techniques for applying knowledge of physics to the study of living systems
- Presents material in a straight forward manner requiring very little background in physics or biology
- Includes many figures, examples and illustrative problems and appendices which provide convenient access to the most important concepts of mechanics, electricity, and optics
Read more
Collapse

About the author

Paul Davidovits, Professor of Chemistry at Boston College, was co-awarded the prestigious R.W. Wood prize from the Optical Society of America for his seminal work in optics. His contribution was foundational in the field of confocal microscopy, which allows engineers and biologists to produce optical sections through 3D objects such as semiconductor circuits, living tissues, or a single cell. He has published more than 150 papers in physical chemistry and is a Fellow of the American Physical Society and of the American Association for Advancement of Science. The second edition of Physics in Biology and Medicine received the Alpha Sigma Nu Book Award in the Discipline of the Natural Sciences.

Read more
Collapse
3.5
4 total
Loading...

Additional Information

Publisher
Academic Press
Read more
Collapse
Published on
Sep 28, 2007
Read more
Collapse
Pages
336
Read more
Collapse
ISBN
9780080555935
Read more
Collapse
Read more
Collapse
Read more
Collapse
Language
English
Read more
Collapse
Genres
Medical / General
Science / Applied Sciences
Science / Life Sciences / Biochemistry
Science / Life Sciences / Biophysics
Science / Physics / General
Read more
Collapse
Content Protection
This content is DRM protected.
Read more
Collapse
Read Aloud
Available on Android devices
Read more
Collapse

Reading information

Smartphones and Tablets

Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.

Laptops and Computers

You can read books purchased on Google Play using your computer's web browser.

eReaders and other devices

To read on e-ink devices like the Sony eReader or Barnes & Noble Nook, you'll need to download a file and transfer it to your device. Please follow the detailed Help center instructions to transfer the files to supported eReaders.
Biophysics is a rapidly-evolving interdisciplinary science that applies theories and methods of the physical sciences to questions of biology. Biophysics encompasses many disciplines, including physics, chemistry, mathematics, biology, biochemistry, medicine, pharmacology, physiology, and neuroscience, and it is essential that scientists working in these varied fields are able to understand each other's research. Comprehensive Biophysics will help bridge that communication gap.

Written by a team of researchers at the forefront of their respective fields, under the guidance of Chief Editor Edward Egelman, Comprehensive Biophysics provides definitive introductions to a broad array of topics, uniting different areas of biophysics research - from the physical techniques for studying macromolecular structure to protein folding, muscle and molecular motors, cell biophysics, bioenergetics and more. The result is this comprehensive scientific resource - a valuable tool both for helping researchers come to grips quickly with material from related biophysics fields outside their areas of expertise, and for reinforcing their existing knowledge.

Biophysical research today encompasses many areas of biology. These studies do not necessarily share a unique identifying factor. This work unites the different areas of research and allows users, regardless of their background, to navigate through the most essential concepts with ease, saving them time and vastly improving their understandingThe field of biophysics counts several journals that are directly and indirectly concerned with the field. There is no reference work that encompasses the entire field and unites the different areas of research through deep foundational reviews. Comprehensive Biophysics fills this vacuum, being a definitive work on biophysics. It will help users apply context to the diverse journal literature offering, and aid them in identifying areas for further researchChief Editor Edward Egelman (E-I-C, Biophysical Journal) has assembled an impressive, world-class team of Volume Editors and Contributing Authors. Each chapter has been painstakingly reviewed and checked for consistent high quality. The result is an authoritative overview which ties the literature together and provides the user with a reliable background information and citation resource
Over the past several years, I have organized and taught a core course in Modern Biophysics Techniques at the University of California Davis. Graduate students in biophysics, chemistry, physics, and engineering enroll in the class to survey the physical techniques that scientists use to study biology.

Introducing the diverse and complex field of biophysics in an academically rigorous but in-teresting way poses daunting challenges. Indeed, the course has undergone many transforma-tions and has tried on many styles: seminar/journal club, lecture/lab, and just plain didactic lec-ture formats. These, however, have achieved limited success, because they either assume a strong mathematics/physical-science background or reduce the physical science to a pedestrian level of knowledge, or demand that students trudge along with the expert researchers. None have attracted the interest of biology, physiology, or medical students, who must search for the biological meaning within biophysics.

One major obstacle to developing an attractive but scholarly course centers on the balance between formalism and perspective. Each biophysics technique requires a mastery of a chal-lenging set of physical-science/mathematics formalism. Yet even with mastery the reader may still not gain a biomedical perspective. How will these biophysical techniques help clarify the complex issues in biology? Moreover, how will the course deal with biomedical students’ reluc-tance to overcome the imposing physical-science/mathematical formalism in order to gain new perspectives on biology?

These considerations have given rise to the series Handbook of Modern Biophysics. The books in this series will bring current biophysics topics into focus and expand as the field of biophysics expands, so that biology and physical-science students or researchers can learn fun-damental concepts and apply new biophysics techniques to address biomedical questions. How-ever, the chapter structure will recognize the demand for explicating the conceptual framework of the underlying physics formalism and for casting perspectives on the biomedical applica-tions. Each chapter will have a bipartite structure: the first part establishes the fundamental physics concepts and describes the instrumentation or technique, while the second illustrates current applications in addressing complex questions in biology. With the addition of problem sets, further study, and references, the interested reader will be able to further explore the ideas presented.

In the first volume, Fundamental Concepts in Biophysics, the authors lay down a foundation for biophysics study. Rajiv Singh opens the book by pointing to the central importance of "Mathematical Methods in Biophysics." William Fink follows with a discussion on "Quantum Mechanics Basic to Biophysical Methods." Together, these two chapters establish some of the principles of mathematical physics underlying many biophysics techniques. Because computer modeling forms an intricate part of biophysics research, Subhadip Raychaudhuri and colleagues introduce the use of computer modeling in "Computational Modeling of Receptor–Ligand Bind-ing and Cellular Signaling Processes." Yin Yeh and coworkers bring to the reader’s attention the physical basis underlying the common use of fluorescence spectroscopy in biomedical re-search in their chapter "Fluorescence Spectroscopy." Electrophysiologists have also applied biophysics techniques in the study of membrane proteins, and Tsung-Yu Chen et al. explore stochastic processes of ion transport in their "Electrophysiological Measurements of Membrane Proteins." Michael Saxton takes up a key biophysics question about particle distribution and behavior in systems with spatial or temporal inhomogeneity in his chapter "Single-Particle Tracking." Finally, in "NMR Measurement of Biomolecule Diffusion," Thomas Jue explains how magnetic resonance techniques can map biomolecule diffusion in the cell to a theory of respiratory control .

This book thus launches the Handbook of Modern Biophysics series and sets up for the reader some of the fundamental concepts underpinning the biophysics issues to be presented in future volumes.

In this “informative and delightful” (American Scientist) biography, Margaret Cheney explores the brilliant and prescient mind of Nikola Tesla, one of the twentieth century’s greatest scientists and inventors.

In Tesla: Man Out of Time, Margaret Cheney explores the brilliant and prescient mind of one of the twentieth century's greatest scientists and inventors. Called a madman by his enemies, a genius by others, and an enigma by nearly everyone, Nikola Tesla was, without a doubt, a trailblazing inventor who created astonishing, sometimes world-transforming devices that were virtually without theoretical precedent. Tesla not only discovered the rotating magnetic field -- the basis of most alternating-current machinery -- but also introduced us to the fundamentals of robotics, computers, and missile science. Almost supernaturally gifted, unfailingly flamboyant and neurotic, Tesla was troubled by an array of compulsions and phobias and was fond of extravagant, visionary experimentations. He was also a popular man-about-town, admired by men as diverse as Mark Twain and George Westinghouse, and adored by scores of society beauties.
From Tesla's childhood in Yugoslavia to his death in New York in the 1940s, Cheney paints a compelling human portrait and chronicles a lifetime of discoveries that radically altered -- and continue to alter -- the world in which we live. Tesla: Man Out of Time is an in-depth look at the seminal accomplishments of a scientific wizard and a thoughtful examination of the obsessions and eccentricities of the man behind the science.
©2020 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google|Location: United StatesLanguage: English (United States)
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.