Zermelo’s Axiom of Choice

Studies in the History of Mathematics and Physical Sciences

Book 8
Springer Science & Business Media
Free sample

This book grew out of my interest in what is common to three disciplines: mathematics, philosophy, and history. The origins of Zermelo's Axiom of Choice, as well as the controversy that it engendered, certainly lie in that intersection. Since the time of Aristotle, mathematics has been concerned alternately with its assumptions and with the objects, such as number and space, about which those assumptions were made. In the historical context of Zermelo's Axiom, I have explored both the vagaries and the fertility of this alternating concern. Though Zermelo's research has provided the focus for this book, much of it is devoted to the problems from which his work originated and to the later developments which, directly or indirectly, he inspired. A few remarks about format are in order. In this book a publication is indicated by a date after a name; so Hilbert 1926, 178 refers to page 178 of an article written by Hilbert, published in 1926, and listed in the bibliography.
Read more
Collapse
Loading...

Additional Information

Publisher
Springer Science & Business Media
Read more
Collapse
Published on
Dec 6, 2012
Read more
Collapse
Pages
412
Read more
Collapse
ISBN
9781461394785
Read more
Collapse
Read more
Collapse
Best For
Read more
Collapse
Language
English
Read more
Collapse
Genres
Mathematics / General
Mathematics / History & Philosophy
Mathematics / Logic
Read more
Collapse
Content Protection
This content is DRM protected.
Read more
Collapse

Reading information

Smartphones and Tablets

Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.

Laptops and Computers

You can read books purchased on Google Play using your computer's web browser.

eReaders and other devices

To read on e-ink devices like the Sony eReader or Barnes & Noble Nook, you'll need to download a file and transfer it to your device. Please follow the detailed Help center instructions to transfer the files to supported eReaders.
One of the pervasive phenomena in the history of science is the development of independent disciplines from the solution or attempted solutions of problems in other areas of science. In the Twentieth Century, the creation of specialties witqin the sciences has accelerated to the point where a large number of scientists in any major branch of science cannot understand the work of a colleague in another subdiscipline of his own science. Despite this fragmentation, the development of techniques or solutions of problems in one area very often contribute fundamentally to solutions of problems in a seemingly unrelated field. Therefore, an examination of this phenomenon of the formation of independent disciplines within the sciences would contrib ute to the understanding of their evolution in modern times. We believe that in this context the history of combinatorial group theory in the late Nineteenth Century and the Twentieth Century can be used effectively as a case study. It is a reasonably well-defined independent specialty, and yet it is closely related to other mathematical disciplines. The fact that combinatorial group theory has, so far, not been influenced by the practical needs of science and technology makes it possible for us to use combinatorial group theory to exhibit the role of the intellectual aspects of the development of mathematics in a clearcut manner. There are other features of combinatorial group theory which appear to make it a reasona ble choice as the object of a historical study.
When I first laid out the framework for A History of Ancient Mathe matical Astronomy, I intended to carry the discussion down to the last applications of Greek astronomical methodology, i. e. Copernicus, Brahe, and Kepler. But as the work proceeded, it became evident that this plan was much too ambitious, and so I decided to terminate my History with late antiquity, well before Islam. Nevertheless, I did not discard the running commentary that I had prepared when studying De revolutionibus in its relation to the methodology of the Almagest. Only recently, E. S. Kennedy and his collaborators had opened access to the" Maragha School" (mainly Ibn ash-Shalir), revealing close parallels to Copernicus's procedures. Accordingly, it seemed useful to make available a modern analysis of De revolutionibus, and thus in 1975 I prepared for publication "Notes on Copernicus. " In the meantime, however, Noel Swerdlow, also starting from Greek astronomy, not only extended his work into a deep analysis of De revolu tionibus, but also systematically investigated its sources and predecessors (Peurbach, Regiomontanus, etc. ). I was aware of these studies through his publications as well as from numerous conversations on the subject at The Institute for Advanced Study and at Brown University. It became clear to me that my own investigations lay at too superficial a level, and I therefore withdrew my manuscript and suggested to Swerdlow that he undertake a thoroughgoing revision and amplification of my "Notes. " His acceptance of my proposal initiated the present publication.
One of the pervasive phenomena in the history of science is the development of independent disciplines from the solution or attempted solutions of problems in other areas of science. In the Twentieth Century, the creation of specialties witqin the sciences has accelerated to the point where a large number of scientists in any major branch of science cannot understand the work of a colleague in another subdiscipline of his own science. Despite this fragmentation, the development of techniques or solutions of problems in one area very often contribute fundamentally to solutions of problems in a seemingly unrelated field. Therefore, an examination of this phenomenon of the formation of independent disciplines within the sciences would contrib ute to the understanding of their evolution in modern times. We believe that in this context the history of combinatorial group theory in the late Nineteenth Century and the Twentieth Century can be used effectively as a case study. It is a reasonably well-defined independent specialty, and yet it is closely related to other mathematical disciplines. The fact that combinatorial group theory has, so far, not been influenced by the practical needs of science and technology makes it possible for us to use combinatorial group theory to exhibit the role of the intellectual aspects of the development of mathematics in a clearcut manner. There are other features of combinatorial group theory which appear to make it a reasona ble choice as the object of a historical study.
This book, Consequences of the Axiom of Choice, is a comprehensive listing of statements that have been proved in the last 100 years using the axiom of choice. Each consequence, also referred to as a form of the axiom of choice, is assigned a number. Part I is a listing of the forms by number. In this part each form is given together with a listing of all statements known to be equivalent to it (equivalent in set theory without the axiom of choice). In Part II the forms are arranged by topic. In Part III we describe the models of set theory which are used to show non-implications between forms. Part IV, the notes section, contains definitions, summaries of important sub-areas and proofs that are not readily available elsewhere. Part V gives references for the relationships between forms and Part VI is the bibliography. Part VII is contained on the floppy disk which is enclosed in the book. It contains a table with form numbers as row and column headings. The entry in the table in row $n$, column $k$ gives the status of the implication ``form $n$ implies form $k$''. Software for easily extracting information from the table is also provided. Features: complete summary of all the work done in the last 100 years on statements that are weaker than the axiom of choice software provided gives complete, convenient access to information about relationships between the various consequences of the axiom of choice and about the models of set theory descriptions of more than 100 models used in the study of the axiom of choice an extensive bibliography About the software: Tables 1 and 2 are accessible on the PC-compatible software included with the book. In addition, the program maketex.c in the software package will create TeX files containing copies of Table 1 and Table 2 which may then be printed. (Tables 1 and 2 are also available at the authors' Web sites: http://www.math.purdue.edu/$\sim$jer/ or http://www.emunix.emich.edu/$\sim$phoward/.) Detailed instructions for setting up and using the software are included in the book's Introduction, and technical support is available directly from the authors.
©2019 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google|Location: United StatesLanguage: English (United States)
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.