IEEE Press Series on Computational Intelligence

Book 10
Sold by John Wiley & Sons
Free sample

This is the first book to take a truly comprehensive look at clustering. It begins with an introduction to cluster analysis and goes on to explore: proximity measures; hierarchical clustering; partition clustering; neural network-based clustering; kernel-based clustering; sequential data clustering; large-scale data clustering; data visualization and high-dimensional data clustering; and cluster validation. The authors assume no previous background in clustering and their generous inclusion of examples and references help make the subject matter comprehensible for readers of varying levels and backgrounds.
Read more

About the author

Rui Xu, PhD, is a Research Associate in the Department of Electrical and Computer Engineering at Missouri University of Science and Technology. His research interests include computational intelligence, machine learning, data mining, neural networks, pattern classification, clustering, and bioinformatics. Dr. Xu is a member of the IEEE, the IEEE Computational Intelligence Society (CIS), and Sigma Xi.

Donald C. Wunsch II, PhD, is the M.K. Finley Missouri Distinguished Professor at Missouri University of Science and Technology. His key contributions are in adaptive resonance and reinforcement learning hardware and applications, neurofuzzy regression, improved Traveling Salesman Problem heuristics, clustering, and bioinformatics. He is an IEEE Fellow, the 2005 International Neural Networks Society (INNS) President, and Senior Fellow of the INNS.

Read more



Additional Information

John Wiley & Sons
Read more
Published on
Nov 3, 2008
Read more
Read more
Read more
Read more
Best For
Read more
Read more
Mathematics / Probability & Statistics / General
Technology & Engineering / Electrical
Read more
Content Protection
This content is DRM protected.
Read more

Reading information

Smartphones and Tablets

Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.

Laptops and Computers

You can read books purchased on Google Play using your computer's web browser.

eReaders and other devices

To read on e-ink devices like the Sony eReader or Barnes & Noble Nook, you'll need to download a file and transfer it to your device. Please follow the detailed Help center instructions to transfer the files to supported eReaders.
From theory to techniques, the first all-in-one resource for EIS

There is a clear demand in advanced process industries, defense, and Internet and communication (VoIP) applications for intelligent yet adaptive/evolving systems. Evolving Intelligent Systems is the first self- contained volume that covers this newly established concept in its entirety, from a systematic methodology to case studies to industrial applications. Featuring chapters written by leading world experts, it addresses the progress, trends, and major achievements in this emerging research field, with a strong emphasis on the balance between novel theoretical results and solutions and practical real-life applications.

Explains the following fundamental approaches for developing evolving intelligent systems (EIS):

the Hierarchical Prioritized Structure

the Participatory Learning Paradigm

the Evolving Takagi-Sugeno fuzzy systems (eTS+)

the evolving clustering algorithm that stems from the well-known Gustafson-Kessel offline clustering algorithm

Emphasizes the importance and increased interest in online processing of data streams

Outlines the general strategy of using the fuzzy dynamic clustering as a foundation for evolvable information granulation

Presents a methodology for developing robust and interpretable evolving fuzzy rule-based systems

Introduces an integrated approach to incremental (real-time) feature extraction and classification

Proposes a study on the stability of evolving neuro-fuzzy recurrent networks

Details methodologies for evolving clustering and classification

Reveals different applications of EIS to address real problems in areas of:

evolving inferential sensors in chemical and petrochemical industry

learning and recognition in robotics

Features downloadable software resources

Evolving Intelligent Systems is the one-stop reference guide for both theoretical and practical issues for computer scientists, engineers, researchers, applied mathematicians, machine learning and data mining experts, graduate students, and professionals.

This Third Edition provides the latest tools and techniques that enable computers to learn

The Third Edition of this internationally acclaimed publication provides the latest theory and techniques for using simulated evolution to achieve machine intelligence. As a leading advocate for evolutionary computation, the author has successfully challenged the traditional notion of artificial intelligence, which essentially programs human knowledge fact by fact, but does not have the capacity to learn or adapt as evolutionary computation does.

Readers gain an understanding of the history of evolutionary computation, which provides a foundation for the author's thorough presentation of the latest theories shaping current research. Balancing theory with practice, the author provides readers with the skills they need to apply evolutionary algorithms that can solve many of today's intransigent problems by adapting to new challenges and learning from experience. Several examples are provided that demonstrate how these evolutionary algorithms learn to solve problems. In particular, the author provides a detailed example of how an algorithm is used to evolve strategies for playing chess and checkers.

As readers progress through the publication, they gain an increasing appreciation and understanding of the relationship between learning and intelligence. Readers familiar with the previous editions will discover much new and revised material that brings the publication thoroughly up to date with the latest research, including the latest theories and empirical properties of evolutionary computation.

The Third Edition also features new knowledge-building aids. Readers will find a host of new and revised examples. New questions at the end of each chapter enable readers to test their knowledge. Intriguing assignments that prepare readers to manage challenges in industry and research have been added to the end of each chapter as well.

This is a must-have reference for professionals in computer and electrical engineering; it provides them with the very latest techniques and applications in machine intelligence. With its question sets and assignments, the publication is also recommended as a graduate-level textbook.
“Brilliant, funny . . . the best math teacher you never had.”—San Francisco Chronicle Once considered tedious, the field of statistics is rapidly evolving into a discipline Hal Varian, chief economist at Google, has actually called “sexy.” From batting averages and political polls to game shows and medical research, the real-world application of statistics continues to grow by leaps and bounds. How can we catch schools that cheat on standardized tests? How does Netflix know which movies you’ll like? What is causing the rising incidence of autism? As best-selling author Charles Wheelan shows us in Naked Statistics, the right data and a few well-chosen statistical tools can help us answer these questions and more.

For those who slept through Stats 101, this book is a lifesaver. Wheelan strips away the arcane and technical details and focuses on the underlying intuition that drives statistical analysis. He clarifies key concepts such as inference, correlation, and regression analysis, reveals how biased or careless parties can manipulate or misrepresent data, and shows us how brilliant and creative researchers are exploiting the valuable data from natural experiments to tackle thorny questions.

And in Wheelan’s trademark style, there’s not a dull page in sight. You’ll encounter clever Schlitz Beer marketers leveraging basic probability, an International Sausage Festival illuminating the tenets of the central limit theorem, and a head-scratching choice from the famous game show Let’s Make a Deal—and you’ll come away with insights each time. With the wit, accessibility, and sheer fun that turned Naked Economics into a bestseller, Wheelan defies the odds yet again by bringing another essential, formerly unglamorous discipline to life.

Explains for the first time how "computing with words" can aid in making subjective judgments

Lotfi Zadeh, the father of fuzzy logic, coined the phrase "computing with words" (CWW) to describe a methodology in which the objects of computation are words and propositions drawn from a natural language. Perceptual Computing explains how to implement CWW to aid in the important area of making subjective judgments, using a methodology that leads to an interactive device—a "Perceptual Computer"—that propagates random and linguistic uncertainties into the subjective judgment in a way that can be modeled and observed by the judgment maker.

This book focuses on the three components of a Perceptual Computer—encoder, CWW engines, and decoder—and then provides detailed applications for each. It uses interval type-2 fuzzy sets (IT2 FSs) and fuzzy logic as the mathematical vehicle for perceptual computing, because such fuzzy sets can model first-order linguistic uncertainties whereas the usual kind of fuzzy sets cannot. Drawing upon the work on subjective judgments that Jerry Mendel and his students completed over the past decade, Perceptual Computing shows readers how to:

Map word-data with its inherent uncertainties into an IT2 FS that captures these uncertainties

Use uncertainty measures to quantify linguistic uncertainties

Compare IT2 FSs by using similarity and rank

Compute the subsethood of one IT2 FS in another such set

Aggregate disparate data, ranging from numbers to uniformly weighted intervals to nonuniformly weighted intervals to words

Aggregate multiple-fired IF-THEN rules so that the integrity of word IT2 FS models is preserved

Free MATLAB-based software is also available online so readers can apply the methodology of perceptual computing immediately, and even try to improve upon it. Perceptual Computing is an important go-to for researchers and students in the fields of artificial intelligence and fuzzy logic, as well as for operations researchers, decision makers, psychologists, computer scientists, and computational intelligence experts.

©2018 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.