Analysis of clinical trial results is easier when the data is presented in a visual form. However, clinical graphs must conform to specific guidelines in order to satisfy regulatory agency requirements. If you are a programmer working in the health care and life sciences industry and you want to create straightforward, visually appealing graphs using SAS, then this book is designed specifically for you. Written by two experienced practitioners, the book explains why certain graphs are requested, gives the necessary code to create the graphs, and shows you how to create graphs from ADaM data sets modeled on real-world CDISC pilot study data.
SAS Graphics for Clinical Trials by Example demonstrates step-by-step how to create both simple and complex graphs using Graph Template Language (GTL) and statistical graphics procedures, including the SGPLOT and SGPANEL procedures. You will learn how to generate commonly used plots such as Kaplan-Meier plots and multi-cell survival plots as well as special purpose graphs such as Venn diagrams and interactive graphs. Because your graph is only as good as the aesthetic appearance of the output, you will learn how to create a custom style, change attributes, and set output options. Whether you are just learning how to produce graphs or have been working with graphs for a while, this book is a must-have resource to solve even the most challenging clinical graph problems.
Kriss Harris worked at GlaxoSmithKline as a statistician supporting drug discovery. At GSK, he developed an increasing passion for both SAS graphics and teaching and taught SAS graphics to SAS programmers, statisticians, and scientists. After leaving GSK, he became an independent statistical programmer and has consulted at Eli Lilly, Eisai, and MedAvante-ProPhase. Currently, Kriss is consulting at Eli Lilly supporting drug reimbursements within the oncology therapeutic area and at MedAvante-ProPhase supporting the construction of edit checks. Kriss is based in London, England, and holds a bachelor’s degree in statistics and internet computing from Kingston University and a master’s degree in statistics from the University of Sheffield.
Richann Watson is an independent statistical programmer and CDISC consultant based in Ohio. She has been using SAS since 1996 with most of her experience being in the life sciences industry. She specializes in analyzing clinical trial data and implementing CDISC standards. Additionally, she is a member of the CDISC ADaM team and various sub-teams. Richann loves to code and is an active participant and leader in the SAS User Group community. She has presented numerous papers, posters, and training seminars at SAS Global Forum, PharmaSUG, and various regional and local SAS user group meetings. Richann holds a bachelor’s degree in mathematics and computer science from Northern Kentucky University and master’s degree in statistics from Miami University.