Statistical Mechanics in a Nutshell

In a Nutshell

Book 5
Princeton University Press
Free sample

Statistical mechanics is one of the most exciting areas of physics today, and it also has applications to subjects as diverse as economics, social behavior, algorithmic theory, and evolutionary biology. Statistical Mechanics in a Nutshell offers the most concise, self-contained introduction to this rapidly developing field. Requiring only a background in elementary calculus and elementary mechanics, this book starts with the basics, introduces the most important developments in classical statistical mechanics over the last thirty years, and guides readers to the very threshold of today's cutting-edge research.

Statistical Mechanics in a Nutshell zeroes in on the most relevant and promising advances in the field, including the theory of phase transitions, generalized Brownian motion and stochastic dynamics, the methods underlying Monte Carlo simulations, complex systems--and much, much more. The essential resource on the subject, this book is the most up-to-date and accessible introduction available for graduate students and advanced undergraduates seeking a succinct primer on the core ideas of statistical mechanics.


  • Provides the most concise, self-contained introduction to statistical mechanics

  • Focuses on the most promising advances, not complicated calculations

  • Requires only elementary calculus and elementary mechanics

  • Guides readers from the basics to the threshold of modern research

  • Highlights the broad scope of applications of statistical mechanics

Read more
Collapse

About the author

Luca Peliti is professor of statistical mechanics at the University of Naples Federico II in Italy. His books include Biologically Inspired Physics.
Read more
Collapse
Loading...

Additional Information

Publisher
Princeton University Press
Read more
Collapse
Published on
Aug 8, 2011
Read more
Collapse
Pages
416
Read more
Collapse
ISBN
9781400839360
Read more
Collapse
Read more
Collapse
Read more
Collapse
Language
English
Read more
Collapse
Genres
Science / Mechanics / General
Science / Mechanics / Statics
Science / Physics / General
Science / Physics / Quantum Theory
Read more
Collapse
Content Protection
This content is DRM protected.
Read more
Collapse
Read Aloud
Available on Android devices
Read more
Collapse
Eligible for Family Library

Reading information

Smartphones and Tablets

Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.

Laptops and Computers

You can read books purchased on Google Play using your computer's web browser.

eReaders and other devices

To read on e-ink devices like the Sony eReader or Barnes & Noble Nook, you'll need to download a file and transfer it to your device. Please follow the detailed Help center instructions to transfer the files to supported eReaders.
The new experiments underway at the Large Hadron Collider at CERN in Switzerland may significantly change our understanding of elementary particle physics and, indeed, the universe. This textbook provides a cutting-edge introduction to the field, preparing first-year graduate students and advanced undergraduates to understand and work in LHC physics at the dawn of what promises to be an era of experimental and theoretical breakthroughs.

Christopher Tully, an active participant in the work at the LHC, explains some of the most recent experiments in the field. But this book, which emerged from a course at Princeton University, also provides a comprehensive understanding of the subject. It explains every elementary particle physics process--whether it concerns nonaccelerator experiments, particle astrophysics, or the description of the early universe--as a gauge interaction coupled to the known building blocks of matter. Designed for a one-semester course that is complementary to a course in quantum field theory, the book gives special attention to high-energy collider physics, and includes a detailed discussion of the state of the search for the Higgs boson.



Introduces elementary particle processes relevant to astrophysics, collider physics, and the physics of the early universe
Covers experimental methods, detectors, and measurements
Features a detailed discussion of the Higgs boson search
Includes many challenging exercises

Professors: A supplementary Instructor's Manual which provides solutions for Chapters 1-3 of the textbook, is available as a PDF. It is restricted to teachers using the text in courses. To obtain a copy, please email your request to: Ingrid_Gnerlich "at" press.princeton.edu.
This graduate-level physics textbook provides a comprehensive treatment of the basic principles and phenomena of classical electromagnetism. While many electromagnetism texts use the subject to teach mathematical methods of physics, here the emphasis is on the physical ideas themselves. Anupam Garg distinguishes between electromagnetism in vacuum and that in material media, stressing that the core physical questions are different for each. In vacuum, the focus is on the fundamental content of electromagnetic laws, symmetries, conservation laws, and the implications for phenomena such as radiation and light. In material media, the focus is on understanding the response of the media to imposed fields, the attendant constitutive relations, and the phenomena encountered in different types of media such as dielectrics, ferromagnets, and conductors. The text includes applications to many topical subjects, such as magnetic levitation, plasmas, laser beams, and synchrotrons.

Classical Electromagnetism in a Nutshell is ideal for a yearlong graduate course and features more than 300 problems, with solutions to many of the advanced ones. Key formulas are given in both SI and Gaussian units; the book includes a discussion of how to convert between them, making it accessible to adherents of both systems.


Offers a complete treatment of classical electromagnetism
Emphasizes physical ideas
Separates the treatment of electromagnetism in vacuum and material media
Presents key formulas in both SI and Gaussian units
Covers applications to other areas of physics
Includes more than 300 problems
This unique textbook provides an accessible introduction to Einstein's general theory of relativity, a subject of breathtaking beauty and supreme importance in physics. With his trademark blend of wit and incisiveness, A. Zee guides readers from the fundamentals of Newtonian mechanics to the most exciting frontiers of research today, including de Sitter and anti-de Sitter spacetimes, Kaluza-Klein theory, and brane worlds. Unlike other books on Einstein gravity, this book emphasizes the action principle and group theory as guides in constructing physical theories. Zee treats various topics in a spiral style that is easy on beginners, and includes anecdotes from the history of physics that will appeal to students and experts alike. He takes a friendly approach to the required mathematics, yet does not shy away from more advanced mathematical topics such as differential forms. The extensive discussion of black holes includes rotating and extremal black holes and Hawking radiation. The ideal textbook for undergraduate and graduate students, Einstein Gravity in a Nutshell also provides an essential resource for professional physicists and is accessible to anyone familiar with classical mechanics and electromagnetism. It features numerous exercises as well as detailed appendices covering a multitude of topics not readily found elsewhere.


Provides an accessible introduction to Einstein's general theory of relativity
Guides readers from Newtonian mechanics to the frontiers of modern research
Emphasizes symmetry and the Einstein-Hilbert action
Covers topics not found in standard textbooks on Einstein gravity
Includes interesting historical asides
Features numerous exercises and detailed appendices
Ideal for students, physicists, and scientifically minded lay readers
Solutions manual (available only to teachers)
Winner of the American Astronomical Society's Chambliss Award, Astrophysics in a Nutshell has become the text of choice in astrophysics courses for science majors at top universities in North America and beyond. In this expanded and fully updated second edition, the book gets even better, with a new chapter on extrasolar planets; a greatly expanded chapter on the interstellar medium; fully updated facts and figures on all subjects, from the observed properties of white dwarfs to the latest results from precision cosmology; and additional instructive problem sets. Throughout, the text features the same focused, concise style and emphasis on physics intuition that have made the book a favorite of students and teachers.

Written by Dan Maoz, a leading active researcher, and designed for advanced undergraduate science majors, Astrophysics in a Nutshell is a brief but thorough introduction to the observational data and theoretical concepts underlying modern astronomy. Generously illustrated, it covers the essentials of modern astrophysics, emphasizing the common physical principles that govern astronomical phenomena, and the interplay between theory and observation, while also introducing subjects at the forefront of modern research, including black holes, dark matter, dark energy, and gravitational lensing.

In addition to serving as a course textbook, Astrophysics in a Nutshell is an ideal review for a qualifying exam and a handy reference for teachers and researchers.

The most concise and current astrophysics textbook for science majors—now expanded and fully updated with the latest research resultsContains a broad and well-balanced selection of traditional and current topicsUses simple, short, and clear derivations of physical resultsTrains students in the essential skills of order-of-magnitude analysisFeatures a new chapter on extrasolar planets, including discovery techniquesIncludes new and expanded sections and problems on the physics of shocks, supernova remnants, cosmic-ray acceleration, white dwarf properties, baryon acoustic oscillations, and moreContains instructive problem sets at the end of each chapterSolutions manual (available only to professors)
Although group theory is a mathematical subject, it is indispensable to many areas of modern theoretical physics, from atomic physics to condensed matter physics, particle physics to string theory. In particular, it is essential for an understanding of the fundamental forces. Yet until now, what has been missing is a modern, accessible, and self-contained textbook on the subject written especially for physicists.

Group Theory in a Nutshell for Physicists fills this gap, providing a user-friendly and classroom-tested text that focuses on those aspects of group theory physicists most need to know. From the basic intuitive notion of a group, A. Zee takes readers all the way up to how theories based on gauge groups could unify three of the four fundamental forces. He also includes a concise review of the linear algebra needed for group theory, making the book ideal for self-study.

Provides physicists with a modern and accessible introduction to group theoryCovers applications to various areas of physics, including field theory, particle physics, relativity, and much moreTopics include finite group and character tables; real, pseudoreal, and complex representations; Weyl, Dirac, and Majorana equations; the expanding universe and group theory; grand unification; and much moreThe essential textbook for students and an invaluable resource for researchersFeatures a brief, self-contained treatment of linear algebraAn online illustration package is available to professorsSolutions manual (available only to professors)
The new experiments underway at the Large Hadron Collider at CERN in Switzerland may significantly change our understanding of elementary particle physics and, indeed, the universe. This textbook provides a cutting-edge introduction to the field, preparing first-year graduate students and advanced undergraduates to understand and work in LHC physics at the dawn of what promises to be an era of experimental and theoretical breakthroughs.

Christopher Tully, an active participant in the work at the LHC, explains some of the most recent experiments in the field. But this book, which emerged from a course at Princeton University, also provides a comprehensive understanding of the subject. It explains every elementary particle physics process--whether it concerns nonaccelerator experiments, particle astrophysics, or the description of the early universe--as a gauge interaction coupled to the known building blocks of matter. Designed for a one-semester course that is complementary to a course in quantum field theory, the book gives special attention to high-energy collider physics, and includes a detailed discussion of the state of the search for the Higgs boson.



Introduces elementary particle processes relevant to astrophysics, collider physics, and the physics of the early universe
Covers experimental methods, detectors, and measurements
Features a detailed discussion of the Higgs boson search
Includes many challenging exercises

Professors: A supplementary Instructor's Manual which provides solutions for Chapters 1-3 of the textbook, is available as a PDF. It is restricted to teachers using the text in courses. To obtain a copy, please email your request to: Ingrid_Gnerlich "at" press.princeton.edu.
This graduate-level physics textbook provides a comprehensive treatment of the basic principles and phenomena of classical electromagnetism. While many electromagnetism texts use the subject to teach mathematical methods of physics, here the emphasis is on the physical ideas themselves. Anupam Garg distinguishes between electromagnetism in vacuum and that in material media, stressing that the core physical questions are different for each. In vacuum, the focus is on the fundamental content of electromagnetic laws, symmetries, conservation laws, and the implications for phenomena such as radiation and light. In material media, the focus is on understanding the response of the media to imposed fields, the attendant constitutive relations, and the phenomena encountered in different types of media such as dielectrics, ferromagnets, and conductors. The text includes applications to many topical subjects, such as magnetic levitation, plasmas, laser beams, and synchrotrons.

Classical Electromagnetism in a Nutshell is ideal for a yearlong graduate course and features more than 300 problems, with solutions to many of the advanced ones. Key formulas are given in both SI and Gaussian units; the book includes a discussion of how to convert between them, making it accessible to adherents of both systems.


Offers a complete treatment of classical electromagnetism
Emphasizes physical ideas
Separates the treatment of electromagnetism in vacuum and material media
Presents key formulas in both SI and Gaussian units
Covers applications to other areas of physics
Includes more than 300 problems
©2019 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google|Location: United StatesLanguage: English (United States)
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.