Function Theory of One Complex Variable

Graduate Studies in Mathematics

Book 40
American Mathematical Soc.
Free sample

Complex analysis is one of the most central subjects in mathematics. It is compelling and rich in its own right, but it is also remarkably useful in a wide variety of other mathematical subjects, both pure and applied. This book is different from others in that it treats complex variables as a direct development from multivariable real calculus. As each new idea is introduced, it is related to the corresponding idea from real analysis and calculus. The text is rich with examples and exercises that illustrate this point. The authors have systematically separated the analysis from the topology, as can be seen in their proof of the Cauchy theorem. The book concludes with several chapters on special topics, including full treatments of special functions, the prime number theorem, and the Bergman kernel. The authors also treat $H^p$ spaces and Painleve's theorem on smoothness to the boundary for conformal maps. This book is a text for a first-year graduate course in complex analysis. It is an engaging and modern introduction to the subject, reflecting the authors' expertise both as mathematicians and as expositors.
Read more
Collapse
Loading...

Additional Information

Publisher
American Mathematical Soc.
Read more
Collapse
Published on
Dec 31, 2006
Read more
Collapse
Pages
504
Read more
Collapse
ISBN
9780821839621
Read more
Collapse
Read more
Collapse
Best For
Read more
Collapse
Language
English
Read more
Collapse
Genres
Mathematics / Functional Analysis
Read more
Collapse
Content Protection
This content is DRM protected.
Read more
Collapse

Reading information

Smartphones and Tablets

Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.

Laptops and Computers

You can read books purchased on Google Play using your computer's web browser.

eReaders and other devices

To read on e-ink devices like the Sony eReader or Barnes & Noble Nook, you'll need to download a file and transfer it to your device. Please follow the detailed Help center instructions to transfer the files to supported eReaders.
This book concentrates on some general facts and ideas of the theory of stochastic processes. The topics include the Wiener process, stationary processes, infinitely divisible processes, and Ito stochastic equations. Basics of discrete time martingales are also presented and then used in one way or another throughout the book. Another common feature of the main body of the book is using stochastic integration with respect to random orthogonal measures. In particular, it is used for spectral representation of trajectories of stationary processes and for proving that Gaussian stationary processes with rational spectral densities are components of solutions to stochastic equations.In the case of infinitely divisible processes, stochastic integration allows for obtaining a representation of trajectories through jump measures. The Ito stochastic integral is also introduced as a particular case of stochastic integrals with respect to random orthogonal measures. Although it is not possible to cover even a noticeable portion of the topics listed above in a short book, it is hoped that after having followed the material presented here, the reader will have acquired a good understanding of what kind of results are available and what kind of techniques are used to obtain them. With more than 100 problems included, the book can serve as a text for an introductory course on stochastic processes or for independent study. Other works by this author published by the AMS include, ""Lectures on Elliptic and Parabolic Equations in Holder Spaces"" and ""Introduction to the Theory of Diffusion Processes"".
This text presents an integrated development of the theory of several complex variables and complex algebraic geometry, leading to proofs of Serre's celebrated GAGA theorems relating the two subjects, and including applications to the representation theory of complex semisimple Lie groups. It includes a thorough treatment of the local theory using the tools of commutative algebra, an extensive development of sheaf theory and the theory of coherent analytic and algebraic sheaves, proofs of the main vanishing theorems for these categories of sheaves, and a complete proof of the finite dimensionality of the cohomology of coherent sheaves on compact varieties. The vanishing theorems have a wide variety of applications and these are covered in detail. Of particular interest are the last three chapters, which are devoted to applications of the preceding material to the study of the structure and representations of complex semisimple Lie groups. Included are introductions to harmonic analysis, the Peter-Weyl theorem, Lie theory and the structure of Lie algebras, semisimple Lie algebras and their representations, algebraic groups and the structure of complex semisimple Lie groups. All of this culminates in Milicic's proof of the Borel-Weil-Bott theorem, which makes extensive use of the material developed earlier in the text. There are numerous examples and exercises in each chapter. This modern treatment of a classic point of view would be an excellent text for a graduate course on several complex variables, as well as a useful reference for the expert.
This book concentrates on some general facts and ideas of the theory of stochastic processes. The topics include the Wiener process, stationary processes, infinitely divisible processes, and Ito stochastic equations. Basics of discrete time martingales are also presented and then used in one way or another throughout the book. Another common feature of the main body of the book is using stochastic integration with respect to random orthogonal measures. In particular, it is used for spectral representation of trajectories of stationary processes and for proving that Gaussian stationary processes with rational spectral densities are components of solutions to stochastic equations.In the case of infinitely divisible processes, stochastic integration allows for obtaining a representation of trajectories through jump measures. The Ito stochastic integral is also introduced as a particular case of stochastic integrals with respect to random orthogonal measures. Although it is not possible to cover even a noticeable portion of the topics listed above in a short book, it is hoped that after having followed the material presented here, the reader will have acquired a good understanding of what kind of results are available and what kind of techniques are used to obtain them. With more than 100 problems included, the book can serve as a text for an introductory course on stochastic processes or for independent study. Other works by this author published by the AMS include, ""Lectures on Elliptic and Parabolic Equations in Holder Spaces"" and ""Introduction to the Theory of Diffusion Processes"".
©2020 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google|Location: United StatesLanguage: English (United States)
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.