Computational Phylogenetics: An Introduction to Designing Methods for Phylogeny Estimation

Cambridge University Press
Free sample

A comprehensive account of both basic and advanced material in phylogeny estimation, focusing on computational and statistical issues. No background in biology or computer science is assumed, and there is minimal use of mathematical formulas, meaning that students from many disciplines, including biology, computer science, statistics, and applied mathematics, will find the text accessible. The mathematical and statistical foundations of phylogeny estimation are presented rigorously, following which more advanced material is covered. This includes substantial chapters on multi-locus phylogeny estimation, supertree methods, multiple sequence alignment techniques, and designing methods for large-scale phylogeny estimation. The author provides key analytical techniques to prove theoretical properties about methods, as well as addressing performance in practice for methods for estimating trees. Research problems requiring novel computational methods are also presented, so that graduate students and researchers from varying disciplines will be able to enter the broad and exciting field of computational phylogenetics.
Read more
Collapse

About the author

Tandy Warnow is a Founder Professor of Engineering at the University of Illinois, Urbana-Champaign. Her awards include the National Science Foundation Young Investigator Award (1994), the David and Lucile Packard Foundation Award in Science and Engineering (1996), a Radcliffe Institute for Advanced Study Fellowship (2003), and a John Simon Guggenheim Memorial Foundation Fellowship (2011). She was elected a Fellow of the Association for Computing Machinery (ACM) in 2015, and of the International Society for Computational Biology (ISCB) in 2017.

Read more
Collapse
Loading…

Additional Information

Publisher
Cambridge University Press
Read more
Collapse
Published on
Nov 2, 2017
Read more
Collapse
Pages
400
Read more
Collapse
ISBN
9781316886922
Read more
Collapse
Read more
Collapse
Best for
Read more
Collapse
Language
English
Read more
Collapse
Genres
Computers / Bioinformatics
Computers / Natural Language Processing
Computers / Programming / Algorithms
Mathematics / Discrete Mathematics
Mathematics / Probability & Statistics / General
Science / Life Sciences / Biology
Read more
Collapse
Content protection
This content is DRM protected.
Read more
Collapse

Reading information

Smartphones and Tablets

Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.

Laptops and Computers

You can read books purchased on Google Play using your computer's web browser.

eReaders and other devices

To read on e-ink devices like the Sony eReader or Barnes & Noble Nook, you'll need to download a file and transfer it to your device. Please follow the detailed Help center instructions to transfer the files to supported eReaders.
Bayesian Modeling in Bioinformatics discusses the development and application of Bayesian statistical methods for the analysis of high-throughput bioinformatics data arising from problems in molecular and structural biology and disease-related medical research, such as cancer. It presents a broad overview of statistical inference, clustering, and classification problems in two main high-throughput platforms: microarray gene expression and phylogenic analysis.

The book explores Bayesian techniques and models for detecting differentially expressed genes, classifying differential gene expression, and identifying biomarkers. It develops novel Bayesian nonparametric approaches for bioinformatics problems, measurement error and survival models for cDNA microarrays, a Bayesian hidden Markov modeling approach for CGH array data, Bayesian approaches for phylogenic analysis, sparsity priors for protein-protein interaction predictions, and Bayesian networks for gene expression data. The text also describes applications of mode-oriented stochastic search algorithms, in vitro to in vivo factor profiling, proportional hazards regression using Bayesian kernel machines, and QTL mapping.

Focusing on design, statistical inference, and data analysis from a Bayesian perspective, this volume explores statistical challenges in bioinformatics data analysis and modeling and offers solutions to these problems. It encourages readers to draw on the evolving technologies and promote statistical development in this area of bioinformatics.

This volume presents a compelling collection of state-of-the-art work in algorithmic computational biology, honoring the legacy of Professor Bernard M.E. Moret in this field. Reflecting the wide-ranging influences of Prof. Moret’s research, the coverage encompasses such areas as phylogenetic tree and network estimation, genome rearrangements, cancer phylogeny, species trees, divide-and-conquer strategies, and integer linear programming. Each self-contained chapter provides an introduction to a cutting-edge problem of particular computational and mathematical interest.Topics and features: addresses the challenges in developing accurate and efficient software for the NP-hard maximum likelihood phylogeny estimation problem; describes the inference of species trees, covering strategies to scale phylogeny estimation methods to large datasets, and the construction of taxonomic supertrees; discusses the inference of ultrametric distances from additive distance matrices, and the inference of ancestral genomes under genome rearrangement events; reviews different techniques for inferring evolutionary histories in cancer, from the use of chromosomal rearrangements to tumor phylogenetics approaches; examines problems in phylogenetic networks, including questions relating to discrete mathematics, and issues of statistical estimation; highlights how evolution can provide a framework within which to understand comparative and functional genomics; provides an introduction to Integer Linear Programming and its use in computational biology, including its use for solving the Traveling Salesman Problem.

Offering an invaluable source of insights for computer scientists, applied mathematicians, and statisticians, this illuminating volume will also prove useful for graduate courses on computational biology and bioinformatics.

AS HEARD ON NPR'S "SCIENCE FRIDAY"
Discover the book that Malcolm Gladwell, Susan Cain, Daniel Pink, and Adam Grant want you to read this year, an "accessible, informative, and hilarious" introduction to the weird and wonderful world of artificial intelligence (Ryan North).
"You look like a thing and I love you" is one of the best pickup lines ever... according to an artificial intelligence trained by scientist Janelle Shane, creator of the popular blog AI Weirdness. She creates silly AIs that learn how to name paint colors, create the best recipes, and even flirt (badly) with humans--all to understand the technology that governs so much of our daily lives.
We rely on AI every day for recommendations, for translations, and to put cat ears on our selfie videos. We also trust AI with matters of life and death, on the road and in our hospitals. But how smart is AI really... and how does it solve problems, understand humans, and even drive self-driving cars?
Shane delivers the answers to every AI question you've ever asked, and some you definitely haven't. Like, how can a computer design the perfect sandwich? What does robot-generated Harry Potter fan-fiction look like? And is the world's best Halloween costume really "Vampire Hog Bride"?
In this smart, often hilarious introduction to the most interesting science of our time, Shane shows how these programs learn, fail, and adapt--and how they reflect the best and worst of humanity.
You Look Like a Thing and I Love You is the perfect book for anyone curious about what the robots in our lives are thinking.
"I can't think of a better way to learn about artificial intelligence, and I've never had so much fun along the way." - Adam Grant, New York Times bestselling author of Originals
©2020 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google|Location: United StatesLanguage: English (United States)
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.