Later chapters cover more advanced topics yet are intended to be approachable for all analysts. These sections examine logistic regression, customer segmentation, hierarchical linear modeling, market basket analysis, structural equation modeling, and conjoint analysis in R. The text uniquely presents Bayesian models with a minimally complex approach, demonstrating and explaining Bayesian methods alongside traditional analyses for analysis of variance, linear models, and metric and choice-based conjoint analysis.
With its emphasis on data visualization, model assessment, and development of statistical intuition, this book provides guidance for any analyst looking to develop or improve skills in R for marketing applications.
Chris Chapman is a Senior Quantitative Researcher at Google. He is also a member of the editorial board of Marketing Insights magazine and the Marketing Insights Council of the American Marketing Association, and has served as chair of the AMA Advanced Research Techniques Forum and AMA Analytics with Purpose conferences. He is an enthusiastic contributor to the quantitative marketing community, where he regularly presents innovations in strategic research and teaches workshops on R and analytic methods.
Elea McDonnell Feit is an Assistant Professor at the LeBow College of Business at Drexel University. Her research focuses on leveraging customer data to make better product design and advertising decisions, particularly when data is incomplete, unmatched or aggregated. Much of her career has focused on building bridges between academia and practice, most recently as a Fellow of the Wharton Customer Analytics Initiative. She enjoys making quantitative methods accessible to a broad audience and regularly gives popular practitioner tutorials on marketing analytics, in addition to teaching courses at LeBow in data-driven digital marketing and design of marketing experiments.