Aleksa SrdanovAleksandra JankovicDecember 1, 2019

Universal-PublishersSolving the linear equation system n x n can also be a problem for a computer, even when the number of equations and unknowns is relatively small (a few hundred). All existing methods are burdened by at least one of the following problems: 1) Complexity of computation expressed through the number of operations required to be done to obtaining solution; 2) Unrestricted growth of the size of the intermediate result, which causes overflow and underflow problems; 3) Changing the value of some coefficients in the input system, which causes the instability of the solution; 4) Require certain conditions for convergence, etc.

In this paper an approximate and exact methods for solving a system of linear equations with an arbitrary number of equations and the same number of unknowns is presented. All the mentioned problems can be avoided by the proposed methods.

It is possible to define an algorithm that does not solve the system of equations in the usual mathematical way, but still finds its exact solution in the exact number of steps already defined. The methods consist of simple computations that are not cumulative. At the same time, the number of operations is acceptable even for a relatively large number of equations and unknowns. In addition, the algorithms allows the process to start from an arbitrary initial n-tuple and always leads to the exact solution if it exists.

Read more

Collapse

Aleksa Srdanov was born in 1958 in Ruma, the Republic of Serbia. He graduated from the Faculty of Mathematics in Beogard in 1981 and worked in scence until 2010. His narrow interests are: number theory, multidimensionality, artificial intelligence and philosophy of natural sciences. His work is based on the finding and using some invariant properties of the subject of research and therefore without a doubt, bit can be said that his approach is cybernetic. In the theory of numbers, he worked on the problem of onumber of partitions and the general form of the partition function. This monograph is a result of his investigation of the invariant properties of all dimensional spaces. He has also published in philosophy and works related to problems of infinity, as well as problems of undecidability.

Aleksandra M. Jankovic was born in Pozarevac, Serbia, in 1983. He studied at University of Kragujevac, Mathematical Science and completed doctoral thesis in Mechanical Engineering, University of Belgrade. He has published 12 papers and one monograph, and is currently working at Technical College of Pozarevac.

Read more

Collapse

Publisher

Universal-Publishers

Read more

Collapse

Published on

Dec 1, 2019

Read more

Collapse

Pages

72

Read more

Collapse

ISBN

9781627347389

Read more

Collapse

Language

English

Read more

Collapse

Genres

Mathematics / Algebra / Linear

Mathematics / Applied

Mathematics / Geometry / Algebraic

Read more

Collapse

Content Protection

This content is DRM protected.

Read more

Collapse

Eligible for Family Library

Report

Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.

You can read books purchased on Google Play using your computer's web browser.

To read on e-ink devices like the Sony eReader or Barnes & Noble Nook, you'll need to download a file and transfer it to your device. Please follow the detailed Help center instructions to transfer the files to supported eReaders.

©2020 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google|Location: United StatesLanguage: English (United States)

By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.