Handbook of Biomedical Telemetry

Sold by John Wiley & Sons
Free sample

A must-have compendium on biomedical telemetry for all biomedical professional engineers, researchers, and graduate students in the field

Handbook of Biomedical Telemetry describes the main components of a typical biomedical telemetry system, as well as its technical challenges. Written by a diverse group of experts in the field, it is filled with overviews, highly-detailed scientific analyses, and example applications of biomedical telemetry. The book also addresses technologies for biomedical sensing and design of biomedical telemetry devices with special emphasis on powering/integration issues and materials for biomedical telemetry applications.

Handbook of Biomedical Telemetry:

  • Describes the main components of a typical biomedical telemetry system, along with the technical challenges
  • Discusses issues of spectrum regulations, standards, and interoperability—while major technical challenges related to advanced materials, miniaturization, and biocompatibility issues are also included
  • Covers body area electromagnetics, inductive coupling, antennas for biomedical telemetry, intra-body communications, non-RF communication links for biomedical telemetry (optical biotelemetry), as well as safety issues, human phantoms, and exposure assessment to high-frequency biotelemetry fields
  • Presents biosensor network topologies and standards; context-aware sensing and multi-sensor fusion; security and privacy issues in biomedical telemetry; and the connection between biomedical telemetry and telemedicine
  • Introduces clinical applications of Body Sensor Networks (BSNs) in addition to selected examples of wearable, implantable, ingestible devices, stimulator and integrated mobile healthcare system paradigms for monitoring and therapeutic intervention

Covering biomedical telemetry devices, biosensor network topologies and standards, clinical applications, wearable and implantable devices, and the effects on the mobile healthcare system, this compendium is a must-have for professional engineers, researchers, and graduate students.

Read more

About the author

KONSTANTINA S. NIKITA is a Professor within the School of Electrical and Computer Engineering at NTUA (National Technical University of Athens). She has authored or coauthored six books, 170 papers in refereed international journals, and over 300 papers in international conference proceedings. The holder of two patents, Dr. Nikita is a senior member of the Institute of Electrical and Electronics Engineers (IEEE); an Associate Editor of the IEEE Transactions on Biomedical Engineering, the Journal of Biomedical and Health Informatics, and the Bioelectromagnetics Journal; a member of the EMBS BHI Technical Committee; the Founding Chair and Ambassador of the IEEE-Engineering in Medicine and Biology Society, Greece Chapter; and Vice Chair of the IEEE Greece Section.

Read more

Reviews

Loading...

Additional Information

Publisher
John Wiley & Sons
Read more
Published on
Jul 28, 2014
Read more
Pages
736
Read more
ISBN
9781118893425
Read more
Language
English
Read more
Genres
Medical / General
Science / Biotechnology
Read more
Content Protection
This content is DRM protected.
Read more
Read Aloud
Available on Android devices
Read more

Reading information

Smartphones and Tablets

Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.

Laptops and Computers

You can read books purchased on Google Play using your computer's web browser.

eReaders and other devices

To read on e-ink devices like the Sony eReader or Barnes & Noble Nook, you'll need to download a file and transfer it to your device. Please follow the detailed Help center instructions to transfer the files to supported eReaders.
Nikolaos K. Uzunoglu
@EOI: AEI rEOMETPEI Epigram of the Academy of Plato in Athens Electromagnetism, the science of forces arising from Amber (HAEKTPON) and the stone of Magnesia (MArNHLIA), has been the fOWldation of major scientific breakthroughs, such as Quantum Mechanics and Theory of Relativity, as well as most leading edge technologies of the twentieth century. The accuracy of electromagnetic fields computations for engineering purposes has been significantly improved during the last decades, due to the deVelopment of efficient computational techniques and the availability of high performance computing. The present book is based on the contributions and discussions developed during the NATO Advanced Study Institute on Applied Computational Electromagnetics: State of the Art and Future Trends, which has taken place in Hellas, on the island of Samos, very close to the birthplace of Electromagnetism. The book covers the fundamental concepts, recent developments and advanced applications of Integral Equation and Metliod of Moments Techniques, Finite Element and BOWldary Element Methods, Finite Difference Time Domain and Transmission Line Methods. Furthermore, topics related to Computational Electromagnetics, such as Inverse Scattering, Semi-Analytical Methods and Parallel Processing Techniques are included. The collective presentation of the principal computational electromagnetics techniques, developed to handle diverse challenging leading edge technology problems, is expected to be useful to researchers and postgraduate students working in various topics of electromagnetic technologies.
Nikolaos K. Uzunoglu
@EOI: AEI rEOMETPEI Epigram of the Academy of Plato in Athens Electromagnetism, the science of forces arising from Amber (HAEKTPON) and the stone of Magnesia (MArNHLIA), has been the fOWldation of major scientific breakthroughs, such as Quantum Mechanics and Theory of Relativity, as well as most leading edge technologies of the twentieth century. The accuracy of electromagnetic fields computations for engineering purposes has been significantly improved during the last decades, due to the deVelopment of efficient computational techniques and the availability of high performance computing. The present book is based on the contributions and discussions developed during the NATO Advanced Study Institute on Applied Computational Electromagnetics: State of the Art and Future Trends, which has taken place in Hellas, on the island of Samos, very close to the birthplace of Electromagnetism. The book covers the fundamental concepts, recent developments and advanced applications of Integral Equation and Metliod of Moments Techniques, Finite Element and BOWldary Element Methods, Finite Difference Time Domain and Transmission Line Methods. Furthermore, topics related to Computational Electromagnetics, such as Inverse Scattering, Semi-Analytical Methods and Parallel Processing Techniques are included. The collective presentation of the principal computational electromagnetics techniques, developed to handle diverse challenging leading edge technology problems, is expected to be useful to researchers and postgraduate students working in various topics of electromagnetic technologies.
©2018 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.