Luminescent Materials and Applications

Wiley Series in Materials for Electronic & Optoelectronic Applications

Book 25
Sold by John Wiley & Sons
Free sample

Luminescence, for example, as fluorescence, bioluminescence, and phosphorescence, can result from chemical changes, electrical energy, subatomic motions, reactions in crystals, or stimulation of an atomic system. This subject continues to have a major technological role for humankind in the form of applications such as organic and inorganic light emitters for flat panel and flexible displays such as plasma displays, LCD displays, and OLED displays.

Luminescent Materials and Applications describes a wide range of materials and applications that are of current interest including organic light emitting materials and devices, inorganic light emitting diode materials and devices, down-conversion materials, nanomaterials, and powder and thin-film electroluminescent phosphor materials and devices. In addition, both the physics and the materials aspects of the field of solid-state luminescence are presented. Thus, the book may be used as a reference to gain an understanding of various types and mechanisms of luminescence and of the implementation of luminescence into practical devices.

The book is aimed at postgraduate students (physicists, electrical engineers, chemical engineers, materials scientists, and engineers) and researchers in industry, for example, at lighting and display companies and academia involved in studying conduction in solids and electronic materials. It will also provide an excellent starting point for all scientists interested in luminescent materials. Finally it is hoped that this book will not only educate, but also stimulate further progress in this rapidly evolving field.
Read more

About the author

Adrian Kitai is Professor in the Department of Materials Science and Engineering / Engineering Physics at McMaster University (Canada). He was educated at McMaster University and received his PhD in Electrical Engineering from Cornell University (USA). His research interests include fundamental luminescent materials, new luminescent devices, new avalanche injection devices and optical fiber liquid crystal display technology. Professor Kitai is a world leader in electroluminescent (EL) science and technology. With over 20 years of experience in the field, he holds several patents relating to EL technology and he has been the Chapter President of the Society for Information Display in Canada. Many of the leading EL researchers in Canada, have been taught and trained by Professor Kitai.
Read more
Loading...

Additional Information

Publisher
John Wiley & Sons
Read more
Published on
Apr 30, 2008
Read more
Pages
292
Read more
ISBN
9780470985670
Read more
Read more
Best For
Read more
Language
English
Read more
Genres
Science / Chemistry / General
Technology & Engineering / Optics
Read more
Content Protection
This content is DRM protected.
Read more

Reading information

Smartphones and Tablets

Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.

Laptops and Computers

You can read books purchased on Google Play using your computer's web browser.

eReaders and other devices

To read on e-ink devices like the Sony eReader or Barnes & Noble Nook, you'll need to download a file and transfer it to your device. Please follow the detailed Help center instructions to transfer the files to supported eReaders.
This textbook introduces the physical concepts required for a comprehensive understanding of p-n junction devices, light emitting diodes and solar cells.

Semiconductor devices have made a major impact on the way we work and live. Today semiconductor
p-n junction diode devices are experiencing substantial growth: solar cells are used on an unprecedented scale in the renewable energy industry; and light emitting diodes (LEDs) are revolutionizing energy efficient lighting. These two emerging industries based on p-n junctions make a significant contribution to the reduction in fossil fuel consumption.

This book covers the two most important applications of semiconductor diodes - solar cells and LEDs - together with quantitative coverage of the physics of the p-n junction.  The reader will gain a thorough understanding of p-n junctions as the text begins with semiconductor and junction device fundamentals and extends to the practical implementation of semiconductors in both photovoltaic and LED devices.  Treatment of a range of important semiconductor materials and device structures is also presented in a readable manner.

Topics are divided into the following six chapters:

• Semiconductor Physics
• The PN Junction Diode
• Photon Emission and Absorption
• The Solar Cell
• Light Emitting Diodes
• Organic Semiconductors, OLEDs and Solar Cells

Containing student problems at the end of each chapter and worked example problems throughout, this textbook is intended for senior level undergraduate students doing courses in electrical engineering, physics and materials science. Researchers working on solar cells and LED devices, and those in the electronics industry would also benefit from the background information the book provides.

This textbook introduces the physical concepts required for a comprehensive understanding of p-n junction devices, light emitting diodes and solar cells.

Semiconductor devices have made a major impact on the way we work and live. Today semiconductor
p-n junction diode devices are experiencing substantial growth: solar cells are used on an unprecedented scale in the renewable energy industry; and light emitting diodes (LEDs) are revolutionizing energy efficient lighting. These two emerging industries based on p-n junctions make a significant contribution to the reduction in fossil fuel consumption.

This book covers the two most important applications of semiconductor diodes - solar cells and LEDs - together with quantitative coverage of the physics of the p-n junction.  The reader will gain a thorough understanding of p-n junctions as the text begins with semiconductor and junction device fundamentals and extends to the practical implementation of semiconductors in both photovoltaic and LED devices.  Treatment of a range of important semiconductor materials and device structures is also presented in a readable manner.

Topics are divided into the following six chapters:

• Semiconductor Physics
• The PN Junction Diode
• Photon Emission and Absorption
• The Solar Cell
• Light Emitting Diodes
• Organic Semiconductors, OLEDs and Solar Cells

Containing student problems at the end of each chapter and worked example problems throughout, this textbook is intended for senior level undergraduate students doing courses in electrical engineering, physics and materials science. Researchers working on solar cells and LED devices, and those in the electronics industry would also benefit from the background information the book provides.

©2018 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google|Location: United StatesLanguage: English (United States)
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.