Introduction to Homological Algebra, 85

Academic Press
Free sample

An Introduction to Homological Algebra discusses the origins of algebraic topology. It also presents the study of homological algebra as a two-stage affair. First, one must learn the language of Ext and Tor and what it describes. Second, one must be able to compute these things, and often, this involves yet another language: spectral sequences. Homological algebra is an accessible subject to those who wish to learn it, and this book is the author’s attempt to make it lovable.
This book comprises 11 chapters, with an introductory chapter that focuses on line integrals and independence of path, categories and functors, tensor products, and singular homology. Succeeding chapters discuss Hom and X; projectives, injectives, and flats; specific rings; extensions of groups; homology; Ext; Tor; son of specific rings; the return of cohomology of groups; and spectral sequences, such as bicomplexes, Kunneth Theorems, and Grothendieck Spectral Sequences.
This book will be of interest to practitioners in the field of pure and applied mathematics.
Read more
1 total

Additional Information

Academic Press
Read more
Published on
Sep 7, 1979
Read more
Read more
Read more
Read more
Mathematics / Algebra / General
Mathematics / Topology
Read more
Content Protection
This content is DRM protected.
Read more
Read Aloud
Available on Android devices
Read more
Eligible for Family Library

Reading information

Smartphones and Tablets

Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.

Laptops and Computers

You can read books purchased on Google Play using your computer's web browser.

eReaders and other devices

To read on e-ink devices like the Sony eReader or Barnes & Noble Nook, you'll need to download a file and transfer it to your device. Please follow the detailed Help center instructions to transfer the files to supported eReaders.
This book is designed as a text for the first year of graduate algebra, but it can also serve as a reference since it contains more advanced topics as well. This second edition has a different organization than the first. It begins with a discussion of the cubic and quartic equations, which leads into permutations, group theory, and Galois theory (for finite extensions; infinite Galois theory is discussed later in the book). The study of groups continues with finite abelian groups (finitely generated groups are discussed later, in the context of module theory), Sylow theorems, simplicity of projective unimodular groups, free groups and presentations, and the Nielsen-Schreier theorem (subgroups of free groups are free). The study of commutative rings continues with prime and maximal ideals, unique factorization, noetherian rings, Zorn's lemma and applications, varieties, and Grobner bases. Next, noncommutative rings and modules are discussed, treating tensor product, projective, injective, and flat modules, categories, functors, and natural transformations, categorical constructions (including direct and inverse limits), and adjoint functors. Then follow group representations: Wedderburn-Artin theorems, character theory, theorems of Burnside and Frobenius, division rings, Brauer groups, and abelian categories. Advanced linear algebra treats canonical forms for matrices and the structure of modules over PIDs, followed by multilinear algebra. Homology is introduced, first for simplicial complexes, then as derived functors, with applications to Ext, Tor, and cohomology of groups, crossed products, and an introduction to algebraic $K$-theory. Finally, the author treats localization, Dedekind rings and algebraic number theory, and homological dimensions. The book ends with the proof that regular local rings have unique factorization.
According to the authors of this highly useful compendium, focusing on examples is an extremely effective method of involving undergraduate mathematics students in actual research. It is only as a result of pursuing the details of each example that students experience a significant increment in topological understanding. With that in mind, Professors Steen and Seebach have assembled 143 examples in this book, providing innumerable concrete illustrations of definitions, theorems, and general methods of proof. Far from presenting all relevant examples, however, the book instead provides a fruitful context in which to ask new questions and seek new answers.
Ranging from the familiar to the obscure, the examples are preceded by a succinct exposition of general topology and basic terminology and theory. Each example is treated as a whole, with a highly geometric exposition that helps readers comprehend the material. Over 25 Venn diagrams and reference charts summarize the properties of the examples and allow students to scan quickly for examples with prescribed properties. In addition, discussions of general methods of constructing and changing examples acquaint readers with the art of constructing counterexamples. The authors have included an extensive collection of problems and exercises, all correlated with various examples, and a bibliography of 140 sources, tracing each uncommon example to its origin.
This revised and expanded second edition will be especially useful as a course supplement and reference work for students of general topology. Moreover, it gives the instructor the flexibility to design his own course while providing students with a wealth of historically and mathematically significant examples. 1978 edition.
Leonhard Euler's polyhedron formula describes the structure of many objects--from soccer balls and gemstones to Buckminster Fuller's buildings and giant all-carbon molecules. Yet Euler's formula is so simple it can be explained to a child. Euler's Gem tells the illuminating story of this indispensable mathematical idea.

From ancient Greek geometry to today's cutting-edge research, Euler's Gem celebrates the discovery of Euler's beloved polyhedron formula and its far-reaching impact on topology, the study of shapes. In 1750, Euler observed that any polyhedron composed of V vertices, E edges, and F faces satisfies the equation V-E+F=2. David Richeson tells how the Greeks missed the formula entirely; how Descartes almost discovered it but fell short; how nineteenth-century mathematicians widened the formula's scope in ways that Euler never envisioned by adapting it for use with doughnut shapes, smooth surfaces, and higher dimensional shapes; and how twentieth-century mathematicians discovered that every shape has its own Euler's formula. Using wonderful examples and numerous illustrations, Richeson presents the formula's many elegant and unexpected applications, such as showing why there is always some windless spot on earth, how to measure the acreage of a tree farm by counting trees, and how many crayons are needed to color any map.

Filled with a who's who of brilliant mathematicians who questioned, refined, and contributed to a remarkable theorem's development, Euler's Gem will fascinate every mathematics enthusiast.

©2018 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google|Location: United StatesLanguage: English (United States)
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.