Face Recognition

2.7
266 izibuyekezo
100K+
Okudawunilodiwe
Isilinganiselwa sokuqukethwe
Wonke umuntu
Isithombe sesithombe-skrini
Isithombe sesithombe-skrini
Isithombe sesithombe-skrini
Isithombe sesithombe-skrini
Isithombe sesithombe-skrini
Isithombe sesithombe-skrini
Isithombe sesithombe-skrini
Isithombe sesithombe-skrini

Mayelana nalolu hlelo lokusebenza

Ubuso Recognition ingasetshenziswa kanye nohlaka yokuhlola izindlela ukuqashelwa ubuso eziningana kuhlanganise Neural Networks nge TensorFlow futhi Caffe.

Kuhlanganisa elandelayo preprocessing algorithm:
- ufiphazo
- Nqampuna
- Eye Ukuhambisana
- Gamma Ukulungiswa
- Umehluko Gaussians
- esiyiqili Elihehayo
- Iphethini Binary Local
- Histogramm zokulinganiswa (ingasetshenziswa kuphela uma ukwenza mhlophe isetshenziswa kakhulu)
- Shintsha usayizi

Ungakhetha isici isizinda kanye ngezigaba izindlela ezilandelayo:
- Eigenfaces nge Umakhelwane eliseduze
- Image Reshaping nge Ukusekela Vector Machine
- TensorFlow nge SVM noma KNN
- Caffe nge SVM noma KNN

Leli bhukwana ingatholakala lapha https://github.com/Qualeams/Android-Face-Recognition-with-Deep-Learning/blob/master/USER%20MANUAL.md

Okwamanje kuphela kumadivayisi armeabi-v7a futhi phezulu zisekelwa.

Ukuze isipiliyoni best in ukuqashelwa imodi uphendukisa idivaysi kwesokunxele.
_______________________________________________________________

TensorFlow:

Uma ufuna ukusebenzisa imodeli Tensorflow Inception5h, ulilande lapha:
https://storage.googleapis.com/download.tensorflow.org/models/inception5h.zip

Khona-ke ukukopisha ifayela "tensorflow_inception_graph.pb" ukuze "/ sdcard / Isithombe / facerecognition / idatha / TensorFlow"

Sebenzisa lezi izilungiselelo ezizenzakalelayo isiqalo:
Inombolo amakilasi: 1001 (ayifanele njengoba asisebenzisi ungqimba wokugcina)
Wokufaka Usayizi: 224
Image kusho: 128
usayizi lokukhipha: 1024
Wokufaka ungqimba: okokufaka
Lokukhipha ungqimba: avgpool0
ifayela Model: tensorflow_inception_graph.pb
-------------------------------------------------- -------------------------------------------------- -----
Uma ufuna ukusebenzisa imodeli VGG Face yokuchaza, ulilande lapha:
https://www.dropbox.com/s/51wi2la5e034wfv/vgg_faces.pb?dl=0

Isexwayiso: Le modeli lusebenza kuphela kumadivayisi okungenani 3 GB noma RAM.

Khona-ke ukukopisha ifayela "vgg_faces.pb" ukuze "/ sdcard / Isithombe / facerecognition / idatha / TensorFlow"

Sebenzisa lezi izilungiselelo ezizenzakalelayo isiqalo:
Inombolo amakilasi: 1000 (ayifanele njengoba asisebenzisi ungqimba wokugcina)
Wokufaka Usayizi: 224
Image kusho: 128
usayizi lokukhipha: 4096
ungqimba wokufaka: Isimeli
Lokukhipha ungqimba: fc7 / fc7
ifayela Model: vgg_faces.pb
_______________________________________________________________

Caffe:

Uma ufuna ukusebenzisa imodeli VGG Face yokuchaza, ulilande lapha:
http://www.robots.ox.ac.uk/~vgg/software/vgg_face/src/vgg_face_caffe.tar.gz

Isexwayiso: Le modeli lusebenza kuphela kumadivayisi okungenani 3 GB noma RAM.

Khona-ke ukopishe amafayela "VGG_FACE_deploy.prototxt" futhi "VGG_FACE.caffemodel" ukuze "/ sdcard / Isithombe / facerecognition / idatha / Caffe"

Sebenzisa lezi izilungiselelo ezizenzakalelayo isiqalo:
Amanani Mean: 104, 117, 123
Lokukhipha ungqimba: fc7
ifayela Model: VGG_FACE_deploy.prototxt
Izisindo efayelini: VGG_FACE.caffemodel

_______________________________________________________________

Amafayela ilayisensi ingatholakala lapha https://github.com/Qualeams/Android-Face-Recognition-with-Deep-Learning/blob/master/LICENSE.txt futhi lapha https://github.com/Qualeams/Android- ubuso-Recognition-ne-Deep-Learning / blob / master / NOTICE.txt
Kubuyekezwe ngo-
Mey 26, 2017

Ukuphepha kwedatha

Ukuphepha kuqala ngokuqonda ukuthi onjiniyela baqoqa futhi babelane kanjani ngedatha yakho. Ubumfihlo bedatha nezinqubo zokuphepha zingahluka kuye ngokusebenzisa kwakho, isifunda, nobudala. Unjiniyela unikeze lolu lwazi futhi angalubuyekeza ngokuhamba kwesikhathi.
Ayikho idatha eyabiwe nezinkampani zangaphandle
Funda kabanzi mayelana nendlela onjiniyela abaveza ngayo ukwabelana
Ayikho idatha eqoqiwe
Funda kabanzi mayelana nokuthi onjiniyela bakuveza kanjani ukuqoqwa

Izilinganiso nezibuyekezo

2.7
256 izibuyekezo

Yini entsha

- Switch from building Tensorflow from source to using the Jcenter library
- Included optimized_facenet model and changed default settings to use TensorFlow by default