Die toepassing stel 31 uitdagings voor om te oorkom.
Bou die regte breuke wat aan die bokant van die toepassing gelys word, en voeg twee, drie of vier eenheidsbreuke by.
Elke voorgestelde behoorlike faksie het 'n veranderlike aantal oplossings.
En verskillende moeilikheidsgraad
Jy kan nie eenheidsbreuke met dieselfde waarde herhaal nie.
In die toepassing sal jy 'n knoppie vind om al die oplossings wat in die huidige probleem gevind word, uit te vee, en om van voor af te begin.
Die kleinste eenheidsbreuk wat in hierdie toepassing gebruik word, is 1/66.
Die program is ontwerp om die bruikbaarheid van die aftrekking van breuke in die oplossing van sulke probleme aan te toon.
Van www.nummolt.com
Dit is 'n evolusie van die "Ou Egiptiese breuke" gemaak in samewerking met www.mathcats.com
Wenk:
In die Rhind Mathematical Papyrus (RMP) in 1650 vC het die skriba Ahmes die nou-verlore toets van die bewind van die koning Amenemamhat III gekopieer.
Die eerste deel van die papirus word deur die 2/n-tabel opgeneem. Die breuke 2/n vir onewe n wat wissel van 3 tot 101 word uitgedruk as somme van eenheidsbreuke.
In hierdie toepassing kan u 'n paar van die Ahmes-ontbindings bou (2/3, 2/5, 2/7, 2/9, 2/11) en ook die wat deur hom weggegooi is.
Die toepassing laat toe om ook te ontbind: 3/4 , 3/5 , 4/5 , 5/6 , 3/7 , 4/7 , 5/7 , 6/7 , 3/8 , 5/8 , 7/8 , 4/9 , 5/9 , 7/9 , 8/9 , 3/10 , 7/10 , 9/10, 3/11, 4/11, 5/11, 6/11, 7/11, 8 /11, 9/11 en 10/11.
Jy kan die kennis wat jy opgedoen het gebruik om die 2/n-ontbindings op te los om die res van die probleme op te los.
Die toepassing waarsku om die beste oplossing te kry (die een met die laagste noemers)
As dit een van die probleme is wat in die Rhind Wiskundige Papirus-tabel voorkom, waarsku die toepassing teen toeval met die oplossing wat in die Rhind 2/n-tabel geskryf is.
Meer: http://nummolt.blogspot.com/2014/12/adding-unit-fractions.html
Die toepassing "Eigen breuke" (dieselfde ontwikkelaar) is die regte hulpmiddel wat help om 'byvoeging van eenheidsbreuke' op te los
Opgedateer op
17 Nov. 2023