Boolean simplifier

āĻŦāĻŋāĻœā§āĻžāĻžāĻĒāύāϝ⧁āĻ•ā§āϤ
ā§§ā§Ļ āĻšāĻžāϜāĻžā§°+
āĻĄāĻžāωāύāĻ˛â€™āĻĄ
āϏāĻŽāϞ⧰ āĻŽā§‚āĻ˛ā§āϝāĻžāĻ‚āĻ•āύ
āϏāĻ•āϞ⧋
āĻ¸ā§āĻ•ā§ā§°ā§€āύāĻļā§āĻŦāϟ⧰ āĻĒā§āϰāϤāĻŋāĻšā§āĻ›āĻŦāĻŋ
āĻ¸ā§āĻ•ā§ā§°ā§€āύāĻļā§āĻŦāϟ⧰ āĻĒā§āϰāϤāĻŋāĻšā§āĻ›āĻŦāĻŋ
āĻ¸ā§āĻ•ā§ā§°ā§€āύāĻļā§āĻŦāϟ⧰ āĻĒā§āϰāϤāĻŋāĻšā§āĻ›āĻŦāĻŋ
āĻ¸ā§āĻ•ā§ā§°ā§€āύāĻļā§āĻŦāϟ⧰ āĻĒā§āϰāϤāĻŋāĻšā§āĻ›āĻŦāĻŋ
āĻ¸ā§āĻ•ā§ā§°ā§€āύāĻļā§āĻŦāϟ⧰ āĻĒā§āϰāϤāĻŋāĻšā§āĻ›āĻŦāĻŋ
āĻ¸ā§āĻ•ā§ā§°ā§€āύāĻļā§āĻŦāϟ⧰ āĻĒā§āϰāϤāĻŋāĻšā§āĻ›āĻŦāĻŋ
āĻ¸ā§āĻ•ā§ā§°ā§€āύāĻļā§āĻŦāϟ⧰ āĻĒā§āϰāϤāĻŋāĻšā§āĻ›āĻŦāĻŋ
āĻ¸ā§āĻ•ā§ā§°ā§€āύāĻļā§āĻŦāϟ⧰ āĻĒā§āϰāϤāĻŋāĻšā§āĻ›āĻŦāĻŋ
āĻ¸ā§āĻ•ā§ā§°ā§€āύāĻļā§āĻŦāϟ⧰ āĻĒā§āϰāϤāĻŋāĻšā§āĻ›āĻŦāĻŋ
āĻ¸ā§āĻ•ā§ā§°ā§€āύāĻļā§āĻŦāϟ⧰ āĻĒā§āϰāϤāĻŋāĻšā§āĻ›āĻŦāĻŋ
āĻ¸ā§āĻ•ā§ā§°ā§€āύāĻļā§āĻŦāϟ⧰ āĻĒā§āϰāϤāĻŋāĻšā§āĻ›āĻŦāĻŋ
āĻ¸ā§āĻ•ā§ā§°ā§€āύāĻļā§āĻŦāϟ⧰ āĻĒā§āϰāϤāĻŋāĻšā§āĻ›āĻŦāĻŋ
āĻ¸ā§āĻ•ā§ā§°ā§€āύāĻļā§āĻŦāϟ⧰ āĻĒā§āϰāϤāĻŋāĻšā§āĻ›āĻŦāĻŋ
āĻ¸ā§āĻ•ā§ā§°ā§€āύāĻļā§āĻŦāϟ⧰ āĻĒā§āϰāϤāĻŋāĻšā§āĻ›āĻŦāĻŋ
āĻ¸ā§āĻ•ā§ā§°ā§€āύāĻļā§āĻŦāϟ⧰ āĻĒā§āϰāϤāĻŋāĻšā§āĻ›āĻŦāĻŋ

āĻāχ āĻāĻĒā§â€ŒāĻŸā§‹ā§° āĻŦāĻŋāĻˇā§Ÿā§‡

this is web view app of "https://www.boolean-algebra.com"
Boolean Postulate, Properties, and Theorems
The following postulate, properties, and theorems are valid in Boolean Algebra and are used in simplification of logical expressions or functions:

POSTULATES are self - evident truths.

1a: $A=1$ (if A ≠ 0) 1b: $A=0$ (if A ≠ 1)
2a: $0∙0=0$ 2b: $0+0=0$
3a: $1∙1=1$ 3b: $1+1=1$
4a: $1∙0=0$ 4b: $1+0=1$
5a: $\overline{1}=0$ 5b: $\overline{0}=1$
PROPERTIES that are valid in Boolean Algebra are similar to the ones in ordinary algebra

Commutative $A∙B=B∙A$ $A+B=B+A$
Associative $A∙(B∙C)=(A∙B)∙C$ $A+(B+C)=(A+B)+C$
Distributive $A∙(B+C)=A∙B+A∙C$ $A+(B∙C)=(A+B)∙(A+C)$
THEOREMS that are defined in Boolean Algebra are the following:

1a: $A∙0=0$ 1b: $A+0=A$
2a: $A∙1=A$ 2b: $A+1=1$
3a: $A∙A=A$ 3b: $A+A=A$
4a: $A∙\overline{A}=0$ 4b: $A+\overline{A}=1$
5a: $\overline{\overline{A}}=A$ 5b: $A=\overline{\overline{A}}$
6a: $\overline{A∙B}=\overline{A}+\overline{B}$ 6b: $\overline{A+B}=\overline{A}∙\overline{B}$
By applying Boolean postulates, properties and/or theorems we can simplify complex Boolean expressions and build a smaller logic block diagram (less expensive circuit).

For example, to simplify $AB(A+C)$ we have:

$AB(A+C)$ distributive law
=$ABA+ABC$ cumulative law
=$AAB+ABC$ theorem 3a
=$AB+ABC$ distributive law
=$AB(1+C)$ theorem 2b
=$AB1$ theorem 2a
=$AB$
Although the above is all you need to simplify a Boolean equation. You can use an extension of the theorems/laws to make it easier to simplify. The following will reduce the amount of steps required to simplify but will be more difficult to identify.

7a: $A∙(A+B)=A$ 7b: $A+A∙B=A$
8a: $(A+B)∙(A+\overline{B})=A$ 8b: $A∙B+A∙\overline{B}=A$
9a: $(A+\overline{B})∙B=A∙B$ 9b: $A∙\overline{B}+B=A+B$
10: $A⊕B=\overline{A}∙B+A∙\overline{B}$
11: $A⊙B=\overline{A}∙\overline{B}+A∙B$
⊕ = XOR, ⊙ = XNOR
Now using these new theorems/laws we can simplify the previous expression like this.

To simplify $AB(A+C)$ we have:

$AB(A+C)$ distributive law
=$ABA+ABC$ cumulative law
=$AAB+ABC$ theorem 3a
=$AB+ABC$ theorem 7b
āφāĻĒāĻĄā§‡â€™āϟ āϕ⧰āĻž āϤāĻžā§°āĻŋāĻ–
ā§Ļā§Ē-ā§§ā§§-⧍ā§Ļ⧍⧧

āĻĄā§‡āϟāĻž āϏ⧁⧰āĻ•ā§āώāĻž

āĻŦāĻŋāĻ•āĻžāĻļāĻ•ā§°ā§āϤāĻžāϏāĻ•āϞ⧇ āφāĻĒā§‹āύāĻžā§° āĻĄā§‡āϟāĻž āϕ⧇āύ⧇āĻ•ā§ˆ āϏāĻ‚āĻ—ā§ā§°āĻš āφ⧰⧁ āĻļā§āĻŦā§‡ā§ŸāĻžā§° āϕ⧰⧇ āĻ¸ā§‡ā§ŸāĻž āĻŦ⧁āϜāĻŋ āĻĒā§‹ā§ąāĻžā§° āϜ⧰āĻŋ⧟āϤ⧇ āϏ⧁⧰āĻ•ā§āώāĻž āφ⧰āĻŽā§āĻ­ āĻšā§ŸāĨ¤ āĻĄā§‡āϟāĻžā§° āĻ—ā§‹āĻĒāĻ¨ā§€ā§ŸāϤāĻž āφ⧰⧁ āϏ⧁⧰āĻ•ā§āώāĻž āĻĒā§ā§°āĻŖāĻžāϞ⧀ āφāĻĒā§‹āύāĻžā§° āĻŦā§āĻ¯ā§ąāĻšāĻžā§°, āĻ…āĻžā§āϚāϞ āφ⧰⧁ āĻŦāϝāĻŧāϏ⧰ āĻ“āĻĒā§°āϤ āĻ­āĻŋāĻ¤ā§āϤāĻŋ āϕ⧰āĻŋ āĻ­āĻŋāĻ¨ā§āύ āĻšâ€™āĻŦ āĻĒāĻžā§°ā§‡āĨ¤ āĻŦāĻŋāĻ•āĻžāĻļāĻ•ā§°ā§āϤāĻžāĻ—ā§°āĻžāĻ•ā§€ā§Ÿā§‡ āĻāχ āϤāĻĨā§āϝāĻ–āĻŋāύāĻŋ āĻĒā§ā§°āĻĻāĻžāύ āϕ⧰āĻŋāϛ⧇ āφ⧰⧁ āϏāĻŽā§Ÿā§° āϞāϗ⧇ āϞāϗ⧇ āĻā§ŸāĻž āφāĻĒāĻĄā§‡â€™āϟ āϕ⧰āĻŋāĻŦ āĻĒāĻžā§°ā§‡āĨ¤
āϤ⧃āĻ¤ā§€ā§Ÿ āĻĒāĻ•ā§āώ⧰ āϏ⧈āϤ⧇ āϕ⧋āύ⧋ āĻĄā§‡āϟāĻž āĻļā§āĻŦ⧇āϝāĻŧāĻžā§° āϕ⧰āĻž āύāĻžāχ
āĻŦāĻŋāĻ•āĻžāĻļāĻ•ā§°ā§āϤāĻžāχ āĻĄā§‡āϟāĻž āĻļā§āĻŦā§‡ā§ŸāĻžā§° āϕ⧰āĻžā§° āĻŦāĻŋāĻˇā§Ÿā§‡ āϕ⧇āύ⧇āĻ•ā§ˆ āĻ˜ā§‹āώāĻŖāĻž āϕ⧰⧇ āϏ⧇āχ āĻŦāĻŋāĻˇā§Ÿā§‡ āĻ…āϧāĻŋāĻ• āϜāĻžāύāĻ•
āϕ⧋āύ⧋ āĻĄā§‡āϟāĻž āϏāĻ‚āĻ—ā§ā§°āĻš āϕ⧰āĻž āĻšā§‹ā§ąāĻž āύāĻžāχ
āĻŦāĻŋāĻ•āĻžāĻļāĻ•ā§°ā§āϤāĻžāχ āĻĄā§‡āϟāĻž āϏāĻ‚āĻ—ā§ā§°āĻš āϕ⧰āĻžā§° āĻŦāĻŋāĻˇā§Ÿā§‡ āϕ⧇āύ⧇āĻ•ā§ˆ āĻ˜ā§‹āώāĻŖāĻž āϕ⧰⧇ āϏ⧇āχ āĻŦāĻŋāĻˇā§Ÿā§‡ āĻ…āϧāĻŋāĻ• āϜāĻžāύāĻ•

āύāϤ⧁āύ āĻ•āĻŋ āφāϛ⧇

Frist Release

āĻāĻĒā§° āϏāĻŽā§°ā§āĻĨāύ

āĻĢ'āύ āύāĻŽā§āĻŦā§°
+94701675563
āĻŦāĻŋāĻ•āĻžāĻļāĻ•ā§°ā§āϤāĻžā§° āĻŦāĻŋāĻˇā§Ÿā§‡
Uththama wadu Sajith Tiyenshan
stiyenshan@gmail.com
419/1 rajakanda polpithigama Kurunegala 60620 Sri Lanka

sajith tiyenshanā§° āĻĻā§āĻŦāĻžā§°āĻž āφ⧰⧁ āĻ…āϧāĻŋāĻ•

āĻāϕ⧇āϧ⧰āĻŖā§° āĻāĻĒā§