Matrix Calculus

āĻāĻĒā§° āĻ­āĻŋāϤ⧰āϤ āĻ•ā§ā§°ā§Ÿ āϏ⧁āĻŦāĻŋāϧāĻž
ā§Ģā§Ļā§Ļ+
āĻĄāĻžāωāύāĻ˛â€™āĻĄ
āϏāĻŽāϞ⧰ āĻŽā§‚āĻ˛ā§āϝāĻžāĻ‚āĻ•āύ
āϏāĻ•āϞ⧋
āĻ¸ā§āĻ•ā§ā§°ā§€āύāĻļā§āĻŦāϟ⧰ āĻĒā§āϰāϤāĻŋāĻšā§āĻ›āĻŦāĻŋ
āĻ¸ā§āĻ•ā§ā§°ā§€āύāĻļā§āĻŦāϟ⧰ āĻĒā§āϰāϤāĻŋāĻšā§āĻ›āĻŦāĻŋ
āĻ¸ā§āĻ•ā§ā§°ā§€āύāĻļā§āĻŦāϟ⧰ āĻĒā§āϰāϤāĻŋāĻšā§āĻ›āĻŦāĻŋ
āĻ¸ā§āĻ•ā§ā§°ā§€āύāĻļā§āĻŦāϟ⧰ āĻĒā§āϰāϤāĻŋāĻšā§āĻ›āĻŦāĻŋ
āĻ¸ā§āĻ•ā§ā§°ā§€āύāĻļā§āĻŦāϟ⧰ āĻĒā§āϰāϤāĻŋāĻšā§āĻ›āĻŦāĻŋ
āĻ¸ā§āĻ•ā§ā§°ā§€āύāĻļā§āĻŦāϟ⧰ āĻĒā§āϰāϤāĻŋāĻšā§āĻ›āĻŦāĻŋ
āĻ¸ā§āĻ•ā§ā§°ā§€āύāĻļā§āĻŦāϟ⧰ āĻĒā§āϰāϤāĻŋāĻšā§āĻ›āĻŦāĻŋ
āĻ¸ā§āĻ•ā§ā§°ā§€āύāĻļā§āĻŦāϟ⧰ āĻĒā§āϰāϤāĻŋāĻšā§āĻ›āĻŦāĻŋ
āĻ¸ā§āĻ•ā§ā§°ā§€āύāĻļā§āĻŦāϟ⧰ āĻĒā§āϰāϤāĻŋāĻšā§āĻ›āĻŦāĻŋ
āĻ¸ā§āĻ•ā§ā§°ā§€āύāĻļā§āĻŦāϟ⧰ āĻĒā§āϰāϤāĻŋāĻšā§āĻ›āĻŦāĻŋ
āĻ¸ā§āĻ•ā§ā§°ā§€āύāĻļā§āĻŦāϟ⧰ āĻĒā§āϰāϤāĻŋāĻšā§āĻ›āĻŦāĻŋ
āĻ¸ā§āĻ•ā§ā§°ā§€āύāĻļā§āĻŦāϟ⧰ āĻĒā§āϰāϤāĻŋāĻšā§āĻ›āĻŦāĻŋ

āĻāχ āĻāĻĒā§â€ŒāĻŸā§‹ā§° āĻŦāĻŋāĻˇā§Ÿā§‡

Matrix Calculus is the best current application calculator for mathematical operations involving numbers, matrices and multi-dimensional matrices for real and complex numbers.
it’s able to perform all standard mathematical calculations on numbers, vectors (matrices of size 1) and matrices from 2 to 5 dimensions.
Numbers can be real or complex, both in normal operations and in matrices;
Matrix Calculus also has a key that allows you to operate exclusively in the real field or in the complex field,
thus giving an error if the field is real and the result of the operation is complex;
to operate on complex numbers Matrix Calculus requires the payment of an in-app.
The only limits for matrices are the following:
- Dimensions of a matrix from 1 to 5
- Maximum total length of a matrix less than 3200
- Maximum length of a matrix dimension = 50

The possible operations are the standard of mathematics and the following matrix operations:

* = product matrix
/ = division of two matrices, or product of the inverse matrix
^ = power of a matrix
+ = sum matrix
- = difference matrix
Det = Determinant
Tra = matrix transpose
Inv = matrix inverse
Adj = adjoint matrix
tr(A) = trace of matrix A
Unit = matrix unit
Rank = matrix rank
Erf = error function erf
REF = matrix in Row Echelon Form (system solution)
The following matrix operations are operative only with the Pro version:
Inv+ = Moore - Penrose pseudo inverse
Eigen = matrix eigenvalues
Evect = matrix eigenvectors
Vsing = matrix singular values S
Uvect = left vector singular matrix U
Vvect = right vector singular matrix V
Dsum = matrix direct sum
Outer = outer product
L(L*L’) = Lower triangolar matrix L so that A = L*L’
Q(Q*R) = Left matrix Q so that A = Q*R
R(Q*R) = Wright matrix R so thar A = Q*R
Jordan = Jordan matrix J
||A|| = Frobenius norm
e^A = exponential of matrix A
√ A = square root matrix

If the matrix allows, it is also possible to calculate a matrix function, where the function is one of those of the calculator, for example (A = matrix):
lne (A), log (A), sin (A) cos (A), tan (A), sinh (A), arcsin (A), arctanh (A)
āφāĻĒāĻĄā§‡â€™āϟ āϕ⧰āĻž āϤāĻžā§°āĻŋāĻ–
⧍⧧-ā§Ļā§Ž-⧍ā§Ļ⧍ā§Ē

āĻĄā§‡āϟāĻž āϏ⧁⧰āĻ•ā§āώāĻž

āĻŦāĻŋāĻ•āĻžāĻļāĻ•ā§°ā§āϤāĻžāϏāĻ•āϞ⧇ āφāĻĒā§‹āύāĻžā§° āĻĄā§‡āϟāĻž āϕ⧇āύ⧇āĻ•ā§ˆ āϏāĻ‚āĻ—ā§ā§°āĻš āφ⧰⧁ āĻļā§āĻŦā§‡ā§ŸāĻžā§° āϕ⧰⧇ āĻ¸ā§‡ā§ŸāĻž āĻŦ⧁āϜāĻŋ āĻĒā§‹ā§ąāĻžā§° āϜ⧰āĻŋ⧟āϤ⧇ āϏ⧁⧰āĻ•ā§āώāĻž āφ⧰āĻŽā§āĻ­ āĻšā§ŸāĨ¤ āĻĄā§‡āϟāĻžā§° āĻ—ā§‹āĻĒāĻ¨ā§€ā§ŸāϤāĻž āφ⧰⧁ āϏ⧁⧰āĻ•ā§āώāĻž āĻĒā§ā§°āĻŖāĻžāϞ⧀ āφāĻĒā§‹āύāĻžā§° āĻŦā§āĻ¯ā§ąāĻšāĻžā§°, āĻ…āĻžā§āϚāϞ āφ⧰⧁ āĻŦāϝāĻŧāϏ⧰ āĻ“āĻĒā§°āϤ āĻ­āĻŋāĻ¤ā§āϤāĻŋ āϕ⧰āĻŋ āĻ­āĻŋāĻ¨ā§āύ āĻšâ€™āĻŦ āĻĒāĻžā§°ā§‡āĨ¤ āĻŦāĻŋāĻ•āĻžāĻļāĻ•ā§°ā§āϤāĻžāĻ—ā§°āĻžāĻ•ā§€ā§Ÿā§‡ āĻāχ āϤāĻĨā§āϝāĻ–āĻŋāύāĻŋ āĻĒā§ā§°āĻĻāĻžāύ āϕ⧰āĻŋāϛ⧇ āφ⧰⧁ āϏāĻŽā§Ÿā§° āϞāϗ⧇ āϞāϗ⧇ āĻā§ŸāĻž āφāĻĒāĻĄā§‡â€™āϟ āϕ⧰āĻŋāĻŦ āĻĒāĻžā§°ā§‡āĨ¤
āϤ⧃āĻ¤ā§€ā§Ÿ āĻĒāĻ•ā§āώ⧰ āϏ⧈āϤ⧇ āϕ⧋āύ⧋ āĻĄā§‡āϟāĻž āĻļā§āĻŦ⧇āϝāĻŧāĻžā§° āϕ⧰āĻž āύāĻžāχ
āĻŦāĻŋāĻ•āĻžāĻļāĻ•ā§°ā§āϤāĻžāχ āĻĄā§‡āϟāĻž āĻļā§āĻŦā§‡ā§ŸāĻžā§° āϕ⧰āĻžā§° āĻŦāĻŋāĻˇā§Ÿā§‡ āϕ⧇āύ⧇āĻ•ā§ˆ āĻ˜ā§‹āώāĻŖāĻž āϕ⧰⧇ āϏ⧇āχ āĻŦāĻŋāĻˇā§Ÿā§‡ āĻ…āϧāĻŋāĻ• āϜāĻžāύāĻ•
āϕ⧋āύ⧋ āĻĄā§‡āϟāĻž āϏāĻ‚āĻ—ā§ā§°āĻš āϕ⧰āĻž āĻšā§‹ā§ąāĻž āύāĻžāχ
āĻŦāĻŋāĻ•āĻžāĻļāĻ•ā§°ā§āϤāĻžāχ āĻĄā§‡āϟāĻž āϏāĻ‚āĻ—ā§ā§°āĻš āϕ⧰āĻžā§° āĻŦāĻŋāĻˇā§Ÿā§‡ āϕ⧇āύ⧇āĻ•ā§ˆ āĻ˜ā§‹āώāĻŖāĻž āϕ⧰⧇ āϏ⧇āχ āĻŦāĻŋāĻˇā§Ÿā§‡ āĻ…āϧāĻŋāĻ• āϜāĻžāύāĻ•

āĻāĻĒā§° āϏāĻŽā§°ā§āĻĨāύ

āĻŦāĻŋāĻ•āĻžāĻļāĻ•ā§°ā§āϤāĻžā§° āĻŦāĻŋāĻˇā§Ÿā§‡
Salvino Marras
support@ingsm.it
Frazione Moron Hugonet, 12 11027 Saint-Vincent Italy
undefined

IngSMā§° āĻĻā§āĻŦāĻžā§°āĻž āφ⧰⧁ āĻ…āϧāĻŋāĻ•

āĻāϕ⧇āϧ⧰āĻŖā§° āĻāĻĒā§