Deep Learning Notes

Sadržava oglase
1+
Preuzimanja
Kategorizacija sadržaja
Svako
Slika snimka ekrana
Slika snimka ekrana
Slika snimka ekrana
Slika snimka ekrana
Slika snimka ekrana
Slika snimka ekrana
Slika snimka ekrana
Slika snimka ekrana
Slika snimka ekrana
Slika snimka ekrana
Slika snimka ekrana
Slika snimka ekrana
Slika snimka ekrana
Slika snimka ekrana
Slika snimka ekrana
Slika snimka ekrana
Slika snimka ekrana
Slika snimka ekrana
Slika snimka ekrana
Slika snimka ekrana
Slika snimka ekrana
Slika snimka ekrana
Slika snimka ekrana
Slika snimka ekrana

O aplikaciji

šŸ“˜ Deep Learning Notes (2025–2026 Edition)

šŸ“š The Deep Learning Notes (2025–2026) Edition is a complete academic and practical resource tailored for university students, college learners, software engineering majors, and aspiring developers. Covering the entire deep learning syllabus in a structured and student-friendly way, this edition combines a complete syllabus with practice MCQs and quizzes to make learning both effective and engaging.

This app provides a step-by-step guide to mastering deep learning concepts, starting from the basics of programming and progressing to advanced topics such as convolutional networks, recurrent neural networks, and structured probabilistic models. Each unit is carefully designed with explanations, examples, and practice questions to strengthen understanding and prepare students for academic exams and professional development.

---

šŸŽÆ Learning Outcomes:

- Understand deep learning concepts from fundamentals to advanced programming.
- Reinforce knowledge with unit-wise MCQs and quizzes.
- Gain hands-on coding experience.
- Prepare effectively for university exams and technical interviews.

---

šŸ“‚ Units & Topics

šŸ”¹ Unit 1: Introduction to Deep Learning
- What is Deep Learning?
- Historical Trends
- Deep Learning Success Stories

šŸ”¹ Unit 2: Linear Algebra
- Scalars, Vectors, Matrices, and Tensors
- Matrix Multiplication
- Eigendecomposition
- Principal Components Analysis

šŸ”¹ Unit 3: Probability and Information Theory
- Probability Distributions
- Marginal and Conditional Probability
- Bayes' Rule
- Entropy and KL Divergence

šŸ”¹ Unit 4: Numerical Computation
- Overflow and Underflow
- Gradient-Based Optimization
- Constrained Optimization
- Automatic Differentiation

šŸ”¹ Unit 5: Machine Learning Basics
- Learning Algorithms
- Capacity and Overfitting and Underfitting

šŸ”¹ Unit 6: Deep Feedforward Networks
- Architecture of Neural Networks
- Activation Functions
- Universal Approximation
- Depth vs. Width

šŸ”¹ Unit 7: Regularization for Deep Learning
- L1 and L2 Regularization
- Dropout
- Early Stopping
- Data Augmentation

šŸ”¹ Unit 8: Optimization for Training Deep Models
- Gradient Descent Variants
- Momentum
- Adaptive Learning Rates
- Challenges in Optimization

šŸ”¹ Unit 9: Convolutional Networks
- Convolution Operation
- Pooling Layers
- CNN Architectures
- Applications in Vision

šŸ”¹ Unit 10: Sequence Modeling: Recurrent and Recursive Nets
- Recurrent Neural Networks
- Long Short-Term Memory
- GRU
- Recursive Neural Networks

šŸ”¹ Unit 11: Practical Methodology
- Evaluating Performance
- Debugging Strategies
- Hyperparameter Optimization
- Transfer Learning

šŸ”¹ Unit 12: Applications
- Computer Vision
- Speech Recognition
- Natural Language Processing
- Game Playing

šŸ”¹ Unit 13: Deep Generative Models
- Autoencoders
- Variational Autoencoders
- Restricted Boltzmann Machines
- Generative Adversarial Networks

šŸ”¹ Unit 14: Linear Factor Models
- PCA and Factor Analysis
- ICA
- Sparse Coding
- Matrix Factorization

šŸ”¹ Unit 15: Autoencoders
- Basic Autoencoders
- Denoising Autoencoders
- Contractive Autoencoders
- Variational Autoencoders

šŸ”¹ Unit 16: Representation Learning
- Distributed Representations
- Manifold Learning
- Deep Belief Networks
- Pretraining Techniques

šŸ”¹ Unit 17: Structured Probabilistic Models for Deep Learning
- Directed and Undirected Graphical Models
- Approximate Inference
- Learning with Latent Variables

---

🌟 Why Choose This App?
- Covers the complete deep learning syllabus in a structured format with MCQs, & quizzes for practice.
- Suitable for BS/CS, BS/IT, software engineering students, and developers.
- Builds strong foundations in problem solving and professional programming.

---

āœ This app is inspired by the authors:
Ian Goodfellow, Yoshua Bengio, Aaron Courville

šŸ“„ Download Now!
Get your Deep Learning Notes (2025–2026) Edition today! Learn, practice, and master deep learning concepts in a structured, exam-oriented, and professionalĀ way.
Ažurirano dana
13. sep 2025.

Sigurnost podataka

Sigurnost počinje razumijevanjem na koji način programeri prikupljaju i dijele vaŔe podatke. Privatnost podataka i sigurnosne prakse se mogu razlikovati ovisno o koriŔtenju, regiji i dobi. Programer je naveo ove informacije i može ih s vremenom ažurirati.
Podaci se ne dijele s trećim stranama
Saznajte viŔe o načinu na koji programeri pružaju izjavu o dijeljenju
Podaci se ne prikupljaju
Saznajte viŔe o načinu na koji programeri pružaju izjavu o prikupljanju
Podaci se Ŕifriraju tokom prenosa
Podaci se ne mogu izbrisati

Å to je novo

šŸš€ Initial Launch of Deep Learning Notes

✨ What’s Inside:
āœ… Complete syllabus covering deep learning fundamentals
āœ… Interactive MCQs & quizzes for self-assessment
āœ… Perfect for students & developers who want to master the subject

šŸŽÆ Suitable For:
šŸ‘©ā€šŸŽ“ Students of BSCS, BSIT, Software Engineering & ICS
šŸ“˜ University & college exams (CS/IT related subjects)
šŸ† Test prep for certifications & technical assessments
šŸ’» Beginners aiming for freelancing & entry-level developer jobs

PodrŔka za aplikaciju

Informacije o programeru
kamran Ahmed
kamahm707@gmail.com
Sheer Orah Post Office, Sheer Hafizabad, Pallandri, District Sudhnoti Pallandri AJK, 12010 Pakistan
undefined

ViŔe od programera StudyZoom