App Linear Equations Solver

Sadržava oglase
5+
Preuzimanja
Kategorizacija sadržaja
Svako
Slika snimka ekrana
Slika snimka ekrana
Slika snimka ekrana
Slika snimka ekrana
Slika snimka ekrana
Slika snimka ekrana
Slika snimka ekrana
Slika snimka ekrana
Slika snimka ekrana
Slika snimka ekrana
Slika snimka ekrana
Slika snimka ekrana
Slika snimka ekrana
Slika snimka ekrana
Slika snimka ekrana

O aplikaciji

The purpose of the application is to provide convenient means for creating and solving systems of linear equations . The application uses the famous and most widely used method of Gauss–Jordan elimination for solving systems of linear equations.
For the application, the number of equations is equal to the number of unknowns. If we designate these matrices by A - coefficients before unknowns, x - unknowns, and b – coefficients after = , respectively, then we can replace the original system of m equations in n unknowns by the single matrix equation Ax=b.
The matrix A in this equation is called the coefficient matrix of the system. The augmented matrix for the system is obtained by adjoining b to A as the last column;
In the application, the augmented matrix is entered into a table. When creating the table, two parameters are set: the maximum length of each coefficient of the augmented matrix and the number of equations, i.e. n. In the last column of the table, the b coefficients are entered.
The application has functions for creating, storing, deleting, and saving the augmented matrix under a new name. Each such matrix is stored under its own name. The list of augmented matrices is shown in a dropdown list. After selecting an item from it, there is a button to calculate the solution of the corresponding linear system, and the solution is displayed in a table. After calculating the solution, there is also a function to display the Gauss-Jordan elimination matrix. All – equations matrix, solution and elimination matrix can be saved in file in selected device directory.
The application has functions for analyze solution: whether it is Unique; Inconsistent or Infinity and show general solution( parametric form).
Ažurirano dana
25. nov 2025.

Sigurnost podataka

Sigurnost počinje razumijevanjem na koji način programeri prikupljaju i dijele vaše podatke. Privatnost podataka i sigurnosne prakse se mogu razlikovati ovisno o korištenju, regiji i dobi. Programer je naveo ove informacije i može ih s vremenom ažurirati.
Podaci se ne dijele s trećim stranama
Saznajte više o načinu na koji programeri pružaju izjavu o dijeljenju
Podaci se ne prikupljaju
Saznajte više o načinu na koji programeri pružaju izjavu o prikupljanju

Podrška za aplikaciju

Informacije o programeru
Ivan Zdravkov Gabrovski
ivan_gabrovsky@yahoo.com
жк.Младост 1 47 вх 1 ет. 16 ап. 122 1784 общ. Столична гр София Bulgaria
undefined

Više od programera ivan gabrovski