Data Science Basics Quiz

Enthält Werbung
10+
Downloads
Altersfreigabe
Jedes Alter
Screenshot
Screenshot
Screenshot
Screenshot
Screenshot
Screenshot
Screenshot
Screenshot
Screenshot
Screenshot
Screenshot
Screenshot
Screenshot
Screenshot
Screenshot
Screenshot
Screenshot
Screenshot
Screenshot
Screenshot
Screenshot

Über diese App

Data Science Basics Quiz is Data Science Basics app designed to help learners, students, and professionals strengthen their understanding of data science concepts through interactive multiple-choice questions (MCQs). This app provides a structured way to practice essential topics such as data collection, cleaning, statistics, probability, machine learning, visualization, big data, and ethics.

Whether you are preparing for exams, interviews, or simply want to improve your skills, Data Science Basics Quiz app makes learning engaging, accessible, and effective.

🔹 Key Features of Data Science Basics Quiz App

MCQ-based practice for better learning and revision.

Covers data collection, statistics, ML, big data, visualization, ethics.

Ideal for students, beginners, professionals, and job aspirants.

User-friendly and lightweight Data Science Basics app.

📘 Topics Covered in Data Science Basics Quiz
1. Introduction to Data Science

Definition – Interdisciplinary field extracting insights from data.

Lifecycle – Data collection, cleaning, analysis, and visualization.

Applications – Healthcare, finance, technology, research, business.

Data Types – Structured, unstructured, semi-structured, streaming.

Skills Needed – Programming, statistics, visualization, domain knowledge.

Ethics – Privacy, fairness, bias, responsible usage.

2. Data Collection & Sources

Primary Data – Surveys, experiments, observations.

Secondary Data – Reports, government datasets, published sources.

APIs – Programmatic access to online data.

Web Scraping – Extracting content from websites.

Databases – SQL, NoSQL, cloud storage.

Big Data Sources – Social media, IoT, transaction systems.

3. Data Cleaning & Preprocessing

Handling Missing Data – Imputation, interpolation, removal.

Transformation – Normalization, scaling, encoding variables.

Outlier Detection – Statistical checks, clustering, visualization.

Data Integration – Merging multiple datasets.

Reduction – Feature selection, dimensionality reduction.

Quality Checks – Accuracy, consistency, completeness.

4. Exploratory Data Analysis (EDA)

Descriptive Statistics – Mean, variance, standard deviation.

Visualization – Histograms, scatterplots, heatmaps.

Correlation – Understanding variable relationships.

Distribution Analysis – Normality, skewness, kurtosis.

Categorical Analysis – Frequency counts, bar plots.

EDA Tools – Pandas, Matplotlib, Seaborn, Plotly.

5. Statistics & Probability Basics

Probability Concepts – Events, outcomes, sample spaces.

Random Variables – Discrete vs continuous.

Distributions – Normal, binomial, Poisson, exponential etc.

6. Machine Learning Fundamentals

Supervised Learning – Training with labeled data.

Unsupervised Learning – Clustering, dimensionality etc.

7. Data Visualization & Communication

Charts – Line, bar, pie, scatter.

Dashboards – BI tools for interactive visuals.

Storytelling – Clear insights with structured narratives.

Tools – Tableau, Power BI, Google Data Studio.

Python Libraries – Matplotlib, Seaborn.

8. Big Data & Tools

Characteristics – Volume, velocity, variety, veracity.

Hadoop Ecosystem – HDFS, MapReduce, Hive, Pig.

Apache Spark – Distributed computing, real-time analytics.

Cloud Platforms – AWS, Azure, Google Cloud.

Databases – SQL vs NoSQL.

Streaming Data – Kafka, Flink pipelines.

9. Data Ethics & Security

Data Privacy – Protecting personal information.

Bias – Preventing unfair or discriminatory models.

AI Ethics – Transparency, accountability, responsibility.

Security – Encryption, authentication, access control.

🎯 Who Can Use Data Science Basics Quiz?

Students – Learn and revise data science concepts.

Beginners – Build foundation in data science basics.

Competitive Exam Aspirants – Prepare for IT and analytics exams.

Job Seekers – Practice MCQs for interviews in data roles.

Professionals – Refresh key concepts and tools.

📥 Download Data Science Basics Quiz now and start your data science journey today!
Aktualisiert am
07.09.2025

Datensicherheit

Was die Sicherheit angeht, solltest du als Erstes verstehen, wie Entwickler deine Daten erheben und weitergeben. Die Datenschutz- und Sicherheitspraktiken können je nach deiner Verwendung, deiner Region und deinem Alter variieren. Diese Informationen wurden vom Entwickler zur Verfügung gestellt und können jederzeit von ihm geändert werden.
Diese App kann die folgenden Datentypen an Dritte weitergeben
App-Informationen und -Leistung und Geräte- oder andere IDs
Daten werden nicht verschlüsselt

Support für diese App

Informationen zum Entwickler
Manish Kumar
kumarmanish505770@gmail.com
Ward 10 AT - Partapur PO - Muktapur PS - Kalyanpur Samastipur, Bihar 848102 India
undefined

Mehr von CodeNest Studios