Trigonometry Practice

შეიცავს რეკლამას
0+
ჩამოტვირთვები
შემცველობის რეიტინგი
ყველა
ეკრანის ანაბეჭდის სურათი
ეკრანის ანაბეჭდის სურათი
ეკრანის ანაბეჭდის სურათი
ეკრანის ანაბეჭდის სურათი
ეკრანის ანაბეჭდის სურათი
ეკრანის ანაბეჭდის სურათი
ეკრანის ანაბეჭდის სურათი
ეკრანის ანაბეჭდის სურათი
ეკრანის ანაბეჭდის სურათი
ეკრანის ანაბეჭდის სურათი
ეკრანის ანაბეჭდის სურათი
ეკრანის ანაბეჭდის სურათი
ეკრანის ანაბეჭდის სურათი
ეკრანის ანაბეჭდის სურათი
ეკრანის ანაბეჭდის სურათი
ეკრანის ანაბეჭდის სურათი
ეკრანის ანაბეჭდის სურათი
ეკრანის ანაბეჭდის სურათი

ამ აპის შესახებ

ტრიგონომეტრიის პრაქტიკა არის ტრიგონომეტრიის აპლიკაცია, რომელიც შექმნილია სტუდენტებისთვის, კონკურენტული გამოცდის ასპირანტებისთვის და შემსწავლელებისთვის, რომლებსაც სურთ ისწავლონ ტრიგონომეტრიის საფუძვლები MCQ-ების საშუალებით. საგულდაგულოდ სტრუქტურირებული პრაქტიკული კითხვებით, ეს აპლიკაცია ეხმარება ტრიგონომეტრიული თანაფარდობების, იდენტობების, გრაფიკების, განტოლებებისა და რეალურ ცხოვრებაში აპლიკაციების გადახედვას.

თუ თქვენ ემზადებით საშუალო სკოლის გამოცდებისთვის, საინჟინრო გამოცდებისთვის, საკონკურსო გამოცდებისთვის, ან უბრალოდ გსურთ გააძლიეროთ თქვენი მათემატიკური საფუძველი, ეს Trigonometry Practice აპლიკაცია შესანიშნავი ინსტრუმენტია სისტემატური გადასინჯვისა და თვითშეფასებისთვის.

აპლიკაცია ორიენტირებულია მხოლოდ MCQ-ზე დაფუძნებულ პრაქტიკაზე, რაც უზრუნველყოფს სწრაფ სწავლას, სიზუსტის შექმნას და გამოცდის სტილის მომზადებას.

📘 თემები დაფარულია ტრიგონომეტრიის პრაქტიკის აპლიკაციაში
1. ტრიგონომეტრიული თანაფარდობები და ფუნქციები

სინუსური თანაფარდობა – საპირისპირო მხარე ÷ ჰიპოტენუზა

კოსინუსური თანაფარდობა – მიმდებარე მხარე ÷ ჰიპოტენუზა

ტანგენტის თანაფარდობა – მოპირდაპირე მხარე ÷ მიმდებარე მხარე

ორმხრივი კოეფიციენტები - განმარტებები cosec, sec, cot

კუთხის გაზომვა - გრადუსები, რადიანები, კვადრატები, კონვერტაციები

თანაფარდობის ნიშნები - ASTC არეგულირებს ოთხ ოთხკუთხედს

2. ტრიგონომეტრიული იდენტობები

პითაგორას იდენტობები – sin²θ + cos²θ = 1

ორმხრივი იდენტობები - ცოდვის, კოს, თან ურთიერთობის ურთიერთმიმართება

კოეფიციენტური იდენტობები – tanθ = sinθ / cosθ

ორმაგი კუთხის იდენტობები - ფორმულები sin2θ, cos2θ, tan2θ

ნახევარკუთხის იდენტობები – sin(θ/2), cos(θ/2), tan(θ/2)

ჯამისა და განსხვავების ფორმულები – sin(A±B), cos(A±B), tan(A±B)

3. ტრიგონომეტრიული განტოლებები

ძირითადი განტოლებები - sinx = 0, cosx = 0 და ამონახსნები

ზოგადი გადაწყვეტილებები - პერიოდულობა მრავალი ამოხსნისთვის

მრავალი კუთხის განტოლება - sin2x, cos3x, tan2x ფორმები

კვადრატული ტრიგონომეტრიული განტოლებები - ამოხსნა ჩანაცვლების მეთოდებით

გრაფიკული გადაწყვეტილებები - ტრიგონომეტრიული გრაფიკების კვეთების გამოყენება

აპლიკაციები - სამკუთხედები, ციკლური ოთხკუთხედები და კუთხის ამოცანები

4. ტრიგონომეტრიული გრაფიკები

სინუს გრაფიკი - რხევა +1-სა და -1-ს შორის

კოსინუს გრაფიკი - იწყება მაქსიმალური, პერიოდული ტალღით

ტანგენტური გრაფიკი - პერიოდული ვერტიკალური ასიმპტოტებით

კოტანგენტური გრაფიკი - ტანგენტის ორმხრივი ასიმპტომური ქცევით

სეკანტური გრაფიკი – კოსინუსის ორმხრივი ტოტებით

კოზეკანტური გრაფიკი - სინუსის რეციპროკული პერიოდული რხევებით

5. შებრუნებული ტრიგონომეტრიული ფუნქციები

განმარტება - ტრიგონომეტრიული თანაფარდობების შებრუნებული ფუნქციები

ძირითადი მნიშვნელობები – შეზღუდული დომენი და დიაპაზონები

გრაფიკები - რკალი, არქოსი, არქტანის ფუნქციების ფორმები

თვისებები - სიმეტრია, ერთფეროვნება, პერიოდულობა

იდენტობები – კავშირები, როგორიცაა sin⁻¹x + cos⁻1x = π/2

აპლიკაციები - განტოლებების, გამოთვლების და გეომეტრიის ამოცანების ამოხსნა

6. ტრიგონომეტრიის გამოყენება

სიმაღლეები და დისტანციები - ამაღლების და დეპრესიის კუთხეები

ნავიგაცია - საკისრები, მიმართულებები და დისტანციები

ასტრონომია - პლანეტების პოზიციები, დისტანციები კუთხეების გამოყენებით

ფიზიკის აპლიკაციები - წრიული მოძრაობა, რხევები, ტალღური მოძრაობა

საინჟინრო აპლიკაციები - გამოკითხვა, სამკუთხედი, სტრუქტურული დიზაინი

რეალური პრობლემები - ჩრდილები, კიბეები, შენობის სიმაღლის გამოთვლები

✨ ტრიგონომეტრიის პრაქტიკის აპლიკაციის ძირითადი მახასიათებლები

✔ მოიცავს ტრიგონომეტრიის ძირითად თემებს სტრუქტურირებული MCQ-ების მეშვეობით
✔ სასარგებლოა სკოლის მოსწავლეებისთვის, ინჟინერიის მისაღები გამოცდის მოსამზადებლად და საკონკურსო ტესტებისთვის
✔ ფოკუსირებული MCQ ფორმატი პრაქტიკისა და გადასინჯვისთვის
✔ ადვილად გასაგები ახსნა-განმარტებები და ეტაპობრივი სწავლა
✔ აძლიერებს პრობლემის გადაჭრის სიჩქარეს და სიზუსტეს

ხართ თუ არა საშუალო სკოლის მოსწავლე, კონკურენტული გამოცდის ასპირანტი ან ვინმე, ვინც გადახედავს მათემატიკის საფუძვლებს, ტრიგონომეტრიის პრაქტიკის აპი არის თქვენი საუკეთესო კომპანიონი ტრიგონომეტრიის კონცეფციებისა და MCQ-ების შესასწავლად.

მოემზადეთ უფრო ჭკვიანურად, უკეთ ივარჯიშეთ და გაზარდეთ თქვენი ნდობა ტრიგონომეტრიის მიმართ ამ მარტივი სასწავლო აპლიკაციით.
განახლდა:
5 ოქტ. 2025

მონაცემთა უსაფრთხოება

უსაფრთხოება იწყება დეველოპერების მიერ თქვენი მონაცემების შეგროვებისა და გაზიარების წესების გაცნობით. მონაცემთა კონფიდენციალურობისა და უსაფრთხოების პრაქტიკები შეიძლება განსხვავდებოდეს თქვენი აპის ვერსიის, გამოყენების, რეგიონის და ასაკის მიხედვით. ეს ინფორმაცია მოწოდებულია დეველოპერის მიერ და შეიძლება დროთა განმავლობაში განახლდეს.
ეს აპი შეიძლება მონაცემთა ამ ტიპებს აზიარებდეს მესამე მხარეებთან
აპების ინფორმაცია და ეფექტურობა და მოწყობილობა ან სხვა იდენტიფიკატორები
მონაცემები შეგროვებული არ არის
შეიტყვეთ მეტი დეველოპერების მიერ კოლექციის გამოქვეყნების შესახებ
მონაცემები დაშიფრული არ არის